Commit d482e3d7 authored by thomwolf's avatar thomwolf
Browse files

adding examples for openai and transformer-xl

parent 9c3c2480
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HugginFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" OpenAI GPT model fine-tuning script.
Adapted from https://github.com/huggingface/pytorch-openai-transformer-lm/blob/master/train.py
It self adapted from https://github.com/openai/finetune-transformer-lm/blob/master/train.py
This script with default values fine-tunes and evaluate a pretrained OpenAI GPT on the RocStories dataset
"""
import argparse
import os
import csv
import random
import logging
from tqdm import tqdm
import numpy as np
import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
TensorDataset)
from sklearn.metrics import accuracy_score
from sklearn.utils import shuffle
from pytorch_pretrained_bert import OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, OpenAIAdam
# from analysis import rocstories as rocstories_analysis
# from datasets import rocstories
# from model_pytorch import DoubleHeadModel, load_openai_pretrained_model
# from opt import OpenAIAdam
# from text_utils import TextEncoder
# from utils import (encode_dataset, iter_data,
# ResultLogger, make_path)
# from loss import MultipleChoiceLossCompute
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logger = logging.getLogger(__name__)
def iter_apply(Xs, Ms, Ys):
# fns = [lambda x: np.concatenate(x, 0), lambda x: float(np.sum(x))]
logits = []
cost = 0
with torch.no_grad():
dh_model.eval()
for xmb, mmb, ymb in iter_data(Xs, Ms, Ys, n_batch=n_batch_train, truncate=False, verbose=True):
n = len(xmb)
XMB = torch.tensor(xmb, dtype=torch.long).to(device)
YMB = torch.tensor(ymb, dtype=torch.long).to(device)
MMB = torch.tensor(mmb).to(device)
_, clf_logits = dh_model(XMB)
clf_logits *= n
clf_losses = compute_loss_fct(XMB, YMB, MMB, clf_logits, only_return_losses=True)
clf_losses *= n
logits.append(clf_logits.to("cpu").numpy())
cost += clf_losses.sum().item()
logits = np.concatenate(logits, 0)
return logits, cost
def iter_predict(Xs, Ms):
logits = []
with torch.no_grad():
dh_model.eval()
for xmb, mmb in iter_data(Xs, Ms, n_batch=n_batch_train, truncate=False, verbose=True):
n = len(xmb)
XMB = torch.tensor(xmb, dtype=torch.long).to(device)
MMB = torch.tensor(mmb).to(device)
_, clf_logits = dh_model(XMB)
logits.append(clf_logits.to("cpu").numpy())
logits = np.concatenate(logits, 0)
return logits
def log(save_dir, desc):
global best_score
print("Logging")
tr_logits, tr_cost = iter_apply(trX[:n_valid], trM[:n_valid], trY[:n_valid])
va_logits, va_cost = iter_apply(vaX, vaM, vaY)
tr_cost = tr_cost / len(trY[:n_valid])
va_cost = va_cost / n_valid
tr_acc = accuracy_score(trY[:n_valid], np.argmax(tr_logits, 1)) * 100.
va_acc = accuracy_score(vaY, np.argmax(va_logits, 1)) * 100.
logger.log(n_epochs=n_epochs, n_updates=n_updates, tr_cost=tr_cost, va_cost=va_cost, tr_acc=tr_acc, va_acc=va_acc)
print('%d %d %.3f %.3f %.2f %.2f' % (n_epochs, n_updates, tr_cost, va_cost, tr_acc, va_acc))
if submit:
score = va_acc
if score > best_score:
best_score = score
path = os.path.join(save_dir, desc, 'best_params')
torch.save(dh_model.state_dict(), make_path(path))
def predict(dataset, submission_dir):
filename = filenames[dataset]
pred_fn = pred_fns[dataset]
label_decoder = label_decoders[dataset]
predictions = pred_fn(iter_predict(teX, teM))
if label_decoder is not None:
predictions = [label_decoder[prediction] for prediction in predictions]
path = os.path.join(submission_dir, filename)
os.makedirs(os.path.dirname(path), exist_ok=True)
with open(path, 'w') as f:
f.write('{}\t{}\n'.format('index', 'prediction'))
for i, prediction in enumerate(predictions):
f.write('{}\t{}\n'.format(i, prediction))
def run_epoch():
for xmb, mmb, ymb in iter_data(*shuffle(trX, trM, trYt, random_state=np.random),
n_batch=n_batch_train, truncate=True, verbose=True):
global n_updates
dh_model.train()
XMB = torch.tensor(xmb, dtype=torch.long).to(device)
YMB = torch.tensor(ymb, dtype=torch.long).to(device)
MMB = torch.tensor(mmb).to(device)
lm_logits, clf_logits = dh_model(XMB)
compute_loss_fct(XMB, YMB, MMB, clf_logits, lm_logits)
n_updates += 1
if n_updates in [1000, 2000, 4000, 8000, 16000, 32000] and n_epochs == 0:
log(save_dir, desc)
def accuracy(out, labels):
outputs = np.argmax(out, axis=1)
return np.sum(outputs == labels)
def load_rocstories_dataset(dataset_path):
""" Output a list of tuples(story, 1st continuation, 2nd continuation, label) """
with open(dataset_path, encoding='utf_8') as f:
f = csv.reader(f)
output = []
next(f) # skip the first line
for line in tqdm(f):
output.append((' '.join(line[1:5]), line[5], line[6], int(line[-1])-1))
return output
def pre_process_dataset(encoded_dataset, max_len, start_token, delimiter_token, clf_token):
n_batch = len(dataset)
input_ids = np.zeros((n_batch, 2, max_len), dtype=np.int32)
mc_token_mask = np.zeros((n_batch, 2, max_len), dtype=np.int32)
lm_labels = np.full((n_batch, 2, max_len), -1, dtype=np.float32)
mc_labels = np.zeros((n_batch,), dtype=np.float32)
for i, (story, cont1, cont2, mc_label), in enumerate(encoded_dataset):
with_cont1 = [start_token] + story[:max_len] + [delimiter_token] + cont1[:max_len] + [clf_token]
with_cont2 = [start_token] + story[:max_len] + [delimiter_token] + cont2[:max_len] + [clf_token]
xmb[i, 0, :len(with_cont1)] = with_cont1
xmb[i, 1, :len(with_cont2)] = with_cont2
mc_token_mask[i, 0, len(with_cont1) - 1] = 1
lm_labels[i, 0, :len(with_cont1)-1] = with_cont1[1:]
lm_labels[i, 1, :len(with_cont2)-1] = with_cont2[1:]
mc_labels[i] = mc_label
all_inputs = (input_ids, mc_token_mask, lm_labels, mc_labels)
all_input_tensors = list(torch.tensor(t) for t in all_inputs)
return all_input_tensors
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--model_name', type=str, default='openai-gpt',
help='pretrained model name')
parser.add_argument('--data_dir', type=str, default='data/')
parser.add_argument('--seed', type=int, default=42)
parser.add_argument('--num_train_epochs', type=int, default=3)
parser.add_argument('--train_batch_size', type=int, default=8)
parser.add_argument('--max_grad_norm', type=int, default=1)
parser.add_argument('--learning_rate', type=float, default=6.25e-5)
parser.add_argument('--warmup_proportion', type=float, default=0.002)
parser.add_argument('--max_grad_norm', type=float, default=1)
parser.add_argument('--lr_schedule', type=str, default='warmup_linear')
parser.add_argument('--weight_decay', type=float, default=0.01)
parser.add_argument('--lm_coef', type=float, default=0.5)
parser.add_argument('--n_valid', type=int, default=374)
args = parser.parse_args()
print(args)
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
n_gpu = torch.cuda.device_count()
logger.info("device", device, "n_gpu", n_gpu)
# Load tokenizer and model
# This loading functions also add new tokens and embeddings called `special tokens`
# These new embeddings will be fine-tuned on the RocStories dataset
special_tokens = ['_start_', '_delimiter_', '_classify_']
tokenizer = OpenAIGPTTokenizer.from_pretrained(args.model_name, special_tokens=special_tokens)
special_tokens_ids = list(tokenizer.convert_tokens_to_ids(token) for token in special_tokens)
model = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name, num_special_tokens=len(special_tokens))
# Load the dataset and prepare the inputs
logger.info("Encoding dataset...")
dataset = load_rocstories_dataset(args.dataset_path)
tokenized_dataset = list(list(tokenizer.tokenize(x) for x in instance) for instance in dataset)
encoded_dataset = list(list(tokenizer.convert_tokens_to_ids(x) for x in instance) for instance in tokenized_dataset)
max_input_length = max(len(story)+max(len(cont1), len(cont2))+3 for story, cont1, cont2, _ in encoded_dataset)
max_input_length = min(max_input_length, model.config.n_positions) # Max size of input for the pre-trained model
max_sub_part_length = max_input_length // 2 - 2
# Prepare dataloader
dataset_tensors = pre_process_dataset(encoded_dataset, max_sub_part_length, *special_tokens_ids)
train_data = TensorDataset(*dataset_tensors)
train_sampler = RandomSampler(train_data)
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)
# Prepare optimizer
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
num_train_optimization_steps = len(train_data) // args.train_batch_size
optimizer = OpenAIAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
max_grad_norm=args.max_grad_norm,
weight_decay=arsg.weight_decay,
t_total=num_train_optimization_steps)
if args.do_train:
global_step = 0
nb_tr_steps = 0
tr_loss = 0
model.train()
for _ in trange(int(args.num_train_epochs), desc="Epoch"):
tr_loss = 0
nb_tr_examples, nb_tr_steps = 0, 0
for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
batch = tuple(t.to(device) for t in batch)
input_ids, mc_token_mask, lm_labels, mc_labels = batch
losses = model(input_ids, mc_token_mask, lm_labels, mc_labels)
loss = args.lm_coef * losses[0] + losses[1]
loss.backward()
tr_loss += loss.item()
nb_tr_examples += input_ids.size(0)
nb_tr_steps += 1
# Save a trained model
model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self
output_model_file = os.path.join(args.output_dir, "pytorch_model.bin")
if args.do_train:
torch.save(model_to_save.state_dict(), output_model_file)
# Load a trained model that you have fine-tuned
model_state_dict = torch.load(output_model_file)
model = OpenAIGPTDoubleHeadsModel(args.mode, state_dict=model_state_dict, num_labels=num_labels)
model.to(device)
if args.do_eval:
eval_examples = processor.get_dev_examples(args.data_dir)
eval_features = convert_examples_to_features(
eval_examples, label_list, args.max_seq_length, tokenizer)
logger.info("***** Running evaluation *****")
logger.info(" Num examples = %d", len(eval_examples))
logger.info(" Batch size = %d", args.eval_batch_size)
all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long)
eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
# Run prediction for full data
eval_sampler = SequentialSampler(eval_data)
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
model.eval()
eval_loss, eval_accuracy = 0, 0
nb_eval_steps, nb_eval_examples = 0, 0
for input_ids, input_mask, segment_ids, label_ids in tqdm(eval_dataloader, desc="Evaluating"):
input_ids = input_ids.to(device)
input_mask = input_mask.to(device)
segment_ids = segment_ids.to(device)
label_ids = label_ids.to(device)
with torch.no_grad():
tmp_eval_loss = model(input_ids, segment_ids, input_mask, label_ids)
logits = model(input_ids, segment_ids, input_mask)
logits = logits.detach().cpu().numpy()
label_ids = label_ids.to('cpu').numpy()
tmp_eval_accuracy = accuracy(logits, label_ids)
eval_loss += tmp_eval_loss.mean().item()
eval_accuracy += tmp_eval_accuracy
nb_eval_examples += input_ids.size(0)
nb_eval_steps += 1
eval_loss = eval_loss / nb_eval_steps
eval_accuracy = eval_accuracy / nb_eval_examples
loss = tr_loss/nb_tr_steps if args.do_train else None
result = {'eval_loss': eval_loss,
'eval_accuracy': eval_accuracy,
'global_step': global_step,
'loss': loss}
output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results *****")
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
if __name__ == "__main__":
main()
n_updates = 0
n_epochs = 0
if dataset != 'stsb':
trYt = trY
if submit:
path = os.path.join(save_dir, desc, 'best_params')
torch.save(dh_model.state_dict(), make_path(path))
best_score = 0
for i in range(args.n_iter):
print("running epoch", i)
run_epoch()
n_epochs += 1
log(save_dir, desc)
if submit:
path = os.path.join(save_dir, desc, 'best_params')
dh_model.load_state_dict(torch.load(path))
predict(dataset, args.submission_dir)
if args.analysis:
rocstories_analysis(data_dir, os.path.join(args.submission_dir, 'ROCStories.tsv'),
os.path.join(log_dir, 'rocstories.jsonl'))
...@@ -16,17 +16,15 @@ ...@@ -16,17 +16,15 @@
""" PyTorch Transformer XL model evaluation script. """ PyTorch Transformer XL model evaluation script.
Adapted from https://github.com/kimiyoung/transformer-xl. Adapted from https://github.com/kimiyoung/transformer-xl.
In particular https://github.com/kimiyoung/transformer-xl/blob/master/pytorch/eval.py In particular https://github.com/kimiyoung/transformer-xl/blob/master/pytorch/eval.py
This script with default values evaluates a pretrained Transformer-XL on WikiText 103
""" """
from __future__ import absolute_import, division, print_function, unicode_literals from __future__ import absolute_import, division, print_function, unicode_literals
import os
import functools
import argparse import argparse
import logging import logging
import time import time
import math import math
import sys
from io import open
import torch import torch
...@@ -39,10 +37,7 @@ logger = logging.getLogger(__name__) ...@@ -39,10 +37,7 @@ logger = logging.getLogger(__name__)
parser = argparse.ArgumentParser(description='PyTorch Transformer Language Model') parser = argparse.ArgumentParser(description='PyTorch Transformer Language Model')
# parser.add_argument('--data', type=str, default='../data/wikitext-103',
# help='location of the data corpus')
parser.add_argument('--model_name', type=str, default='transfo-xl-wt103', parser.add_argument('--model_name', type=str, default='transfo-xl-wt103',
# choices=['transfo-xl-wt103'], #, 'lm1b', 'enwik8', 'text8'],
help='pretrained model name') help='pretrained model name')
parser.add_argument('--split', type=str, default='test', parser.add_argument('--split', type=str, default='test',
choices=['all', 'valid', 'test'], choices=['all', 'valid', 'test'],
...@@ -70,11 +65,11 @@ assert args.ext_len >= 0, 'extended context length must be non-negative' ...@@ -70,11 +65,11 @@ assert args.ext_len >= 0, 'extended context length must be non-negative'
device = torch.device("cuda" if args.cuda else "cpu") device = torch.device("cuda" if args.cuda else "cpu")
# Get logger # Load a pre-processed dataset
# logging = get_logger(os.path.join(args.work_dir, 'log.txt'), # You can also build the corpus yourself using TransfoXLCorpus methods
# log_=not args.no_log) # The pre-processing involve computing word frequencies to prepare the Adaptive input and SoftMax
# and tokenizing the dataset
# Load dataset # The pre-processed corpus is a convertion (using the conversion script )
corpus = TransfoXLCorpus.from_pretrained(args.model_name) corpus = TransfoXLCorpus.from_pretrained(args.model_name)
ntokens = len(corpus.vocab) ntokens = len(corpus.vocab)
...@@ -83,10 +78,7 @@ va_iter = corpus.get_iterator('valid', args.batch_size, args.tgt_len, ...@@ -83,10 +78,7 @@ va_iter = corpus.get_iterator('valid', args.batch_size, args.tgt_len,
te_iter = corpus.get_iterator('test', args.batch_size, args.tgt_len, te_iter = corpus.get_iterator('test', args.batch_size, args.tgt_len,
device=device, ext_len=args.ext_len) device=device, ext_len=args.ext_len)
# Load the best saved model. # Load a pre-trained model
# with open(os.path.join(args.work_dir, 'model.pt'), 'rb') as f:
# model = torch.load(f)
# model.backward_compatible()
model = TransfoXLModel.from_pretrained(args.model_name) model = TransfoXLModel.from_pretrained(args.model_name)
model = model.to(device) model = model.to(device)
...@@ -132,10 +124,6 @@ elif args.split == 'test': ...@@ -132,10 +124,6 @@ elif args.split == 'test':
valid_loss = None valid_loss = None
def format_log(loss, split): def format_log(loss, split):
# if args.dataset in ['enwik8', 'text8']:
# log_str = '| {0} loss {1:5.2f} | {0} bpc {2:9.5f} '.format(
# split, loss, loss / math.log(2))
# else:
log_str = '| {0} loss {1:5.2f} | {0} ppl {2:9.3f} '.format( log_str = '| {0} loss {1:5.2f} | {0} ppl {2:9.3f} '.format(
split, loss, math.exp(loss)) split, loss, math.exp(loss))
return log_str return log_str
......
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment