Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
d482e3d7
Commit
d482e3d7
authored
Feb 07, 2019
by
thomwolf
Browse files
adding examples for openai and transformer-xl
parent
9c3c2480
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
947 additions
and
20 deletions
+947
-20
examples/openai_gpt_train.py
examples/openai_gpt_train.py
+344
-0
examples/transfo_xl_eval.py
examples/transfo_xl_eval.py
+8
-20
examples/transfo_xl_train.py
examples/transfo_xl_train.py
+595
-0
No files found.
examples/openai_gpt_train.py
0 → 100644
View file @
d482e3d7
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HugginFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" OpenAI GPT model fine-tuning script.
Adapted from https://github.com/huggingface/pytorch-openai-transformer-lm/blob/master/train.py
It self adapted from https://github.com/openai/finetune-transformer-lm/blob/master/train.py
This script with default values fine-tunes and evaluate a pretrained OpenAI GPT on the RocStories dataset
"""
import
argparse
import
os
import
csv
import
random
import
logging
from
tqdm
import
tqdm
import
numpy
as
np
import
torch
from
torch.utils.data
import
(
DataLoader
,
RandomSampler
,
SequentialSampler
,
TensorDataset
)
from
sklearn.metrics
import
accuracy_score
from
sklearn.utils
import
shuffle
from
pytorch_pretrained_bert
import
OpenAIGPTDoubleHeadsModel
,
OpenAIGPTTokenizer
,
OpenAIAdam
# from analysis import rocstories as rocstories_analysis
# from datasets import rocstories
# from model_pytorch import DoubleHeadModel, load_openai_pretrained_model
# from opt import OpenAIAdam
# from text_utils import TextEncoder
# from utils import (encode_dataset, iter_data,
# ResultLogger, make_path)
# from loss import MultipleChoiceLossCompute
logging
.
basicConfig
(
format
=
'%(asctime)s - %(levelname)s - %(name)s - %(message)s'
,
datefmt
=
'%m/%d/%Y %H:%M:%S'
,
level
=
logging
.
INFO
)
logger
=
logging
.
getLogger
(
__name__
)
def
iter_apply
(
Xs
,
Ms
,
Ys
):
# fns = [lambda x: np.concatenate(x, 0), lambda x: float(np.sum(x))]
logits
=
[]
cost
=
0
with
torch
.
no_grad
():
dh_model
.
eval
()
for
xmb
,
mmb
,
ymb
in
iter_data
(
Xs
,
Ms
,
Ys
,
n_batch
=
n_batch_train
,
truncate
=
False
,
verbose
=
True
):
n
=
len
(
xmb
)
XMB
=
torch
.
tensor
(
xmb
,
dtype
=
torch
.
long
).
to
(
device
)
YMB
=
torch
.
tensor
(
ymb
,
dtype
=
torch
.
long
).
to
(
device
)
MMB
=
torch
.
tensor
(
mmb
).
to
(
device
)
_
,
clf_logits
=
dh_model
(
XMB
)
clf_logits
*=
n
clf_losses
=
compute_loss_fct
(
XMB
,
YMB
,
MMB
,
clf_logits
,
only_return_losses
=
True
)
clf_losses
*=
n
logits
.
append
(
clf_logits
.
to
(
"cpu"
).
numpy
())
cost
+=
clf_losses
.
sum
().
item
()
logits
=
np
.
concatenate
(
logits
,
0
)
return
logits
,
cost
def
iter_predict
(
Xs
,
Ms
):
logits
=
[]
with
torch
.
no_grad
():
dh_model
.
eval
()
for
xmb
,
mmb
in
iter_data
(
Xs
,
Ms
,
n_batch
=
n_batch_train
,
truncate
=
False
,
verbose
=
True
):
n
=
len
(
xmb
)
XMB
=
torch
.
tensor
(
xmb
,
dtype
=
torch
.
long
).
to
(
device
)
MMB
=
torch
.
tensor
(
mmb
).
to
(
device
)
_
,
clf_logits
=
dh_model
(
XMB
)
logits
.
append
(
clf_logits
.
to
(
"cpu"
).
numpy
())
logits
=
np
.
concatenate
(
logits
,
0
)
return
logits
def
log
(
save_dir
,
desc
):
global
best_score
print
(
"Logging"
)
tr_logits
,
tr_cost
=
iter_apply
(
trX
[:
n_valid
],
trM
[:
n_valid
],
trY
[:
n_valid
])
va_logits
,
va_cost
=
iter_apply
(
vaX
,
vaM
,
vaY
)
tr_cost
=
tr_cost
/
len
(
trY
[:
n_valid
])
va_cost
=
va_cost
/
n_valid
tr_acc
=
accuracy_score
(
trY
[:
n_valid
],
np
.
argmax
(
tr_logits
,
1
))
*
100.
va_acc
=
accuracy_score
(
vaY
,
np
.
argmax
(
va_logits
,
1
))
*
100.
logger
.
log
(
n_epochs
=
n_epochs
,
n_updates
=
n_updates
,
tr_cost
=
tr_cost
,
va_cost
=
va_cost
,
tr_acc
=
tr_acc
,
va_acc
=
va_acc
)
print
(
'%d %d %.3f %.3f %.2f %.2f'
%
(
n_epochs
,
n_updates
,
tr_cost
,
va_cost
,
tr_acc
,
va_acc
))
if
submit
:
score
=
va_acc
if
score
>
best_score
:
best_score
=
score
path
=
os
.
path
.
join
(
save_dir
,
desc
,
'best_params'
)
torch
.
save
(
dh_model
.
state_dict
(),
make_path
(
path
))
def
predict
(
dataset
,
submission_dir
):
filename
=
filenames
[
dataset
]
pred_fn
=
pred_fns
[
dataset
]
label_decoder
=
label_decoders
[
dataset
]
predictions
=
pred_fn
(
iter_predict
(
teX
,
teM
))
if
label_decoder
is
not
None
:
predictions
=
[
label_decoder
[
prediction
]
for
prediction
in
predictions
]
path
=
os
.
path
.
join
(
submission_dir
,
filename
)
os
.
makedirs
(
os
.
path
.
dirname
(
path
),
exist_ok
=
True
)
with
open
(
path
,
'w'
)
as
f
:
f
.
write
(
'{}
\t
{}
\n
'
.
format
(
'index'
,
'prediction'
))
for
i
,
prediction
in
enumerate
(
predictions
):
f
.
write
(
'{}
\t
{}
\n
'
.
format
(
i
,
prediction
))
def
run_epoch
():
for
xmb
,
mmb
,
ymb
in
iter_data
(
*
shuffle
(
trX
,
trM
,
trYt
,
random_state
=
np
.
random
),
n_batch
=
n_batch_train
,
truncate
=
True
,
verbose
=
True
):
global
n_updates
dh_model
.
train
()
XMB
=
torch
.
tensor
(
xmb
,
dtype
=
torch
.
long
).
to
(
device
)
YMB
=
torch
.
tensor
(
ymb
,
dtype
=
torch
.
long
).
to
(
device
)
MMB
=
torch
.
tensor
(
mmb
).
to
(
device
)
lm_logits
,
clf_logits
=
dh_model
(
XMB
)
compute_loss_fct
(
XMB
,
YMB
,
MMB
,
clf_logits
,
lm_logits
)
n_updates
+=
1
if
n_updates
in
[
1000
,
2000
,
4000
,
8000
,
16000
,
32000
]
and
n_epochs
==
0
:
log
(
save_dir
,
desc
)
def
accuracy
(
out
,
labels
):
outputs
=
np
.
argmax
(
out
,
axis
=
1
)
return
np
.
sum
(
outputs
==
labels
)
def
load_rocstories_dataset
(
dataset_path
):
""" Output a list of tuples(story, 1st continuation, 2nd continuation, label) """
with
open
(
dataset_path
,
encoding
=
'utf_8'
)
as
f
:
f
=
csv
.
reader
(
f
)
output
=
[]
next
(
f
)
# skip the first line
for
line
in
tqdm
(
f
):
output
.
append
((
' '
.
join
(
line
[
1
:
5
]),
line
[
5
],
line
[
6
],
int
(
line
[
-
1
])
-
1
))
return
output
def
pre_process_dataset
(
encoded_dataset
,
max_len
,
start_token
,
delimiter_token
,
clf_token
):
n_batch
=
len
(
dataset
)
input_ids
=
np
.
zeros
((
n_batch
,
2
,
max_len
),
dtype
=
np
.
int32
)
mc_token_mask
=
np
.
zeros
((
n_batch
,
2
,
max_len
),
dtype
=
np
.
int32
)
lm_labels
=
np
.
full
((
n_batch
,
2
,
max_len
),
-
1
,
dtype
=
np
.
float32
)
mc_labels
=
np
.
zeros
((
n_batch
,),
dtype
=
np
.
float32
)
for
i
,
(
story
,
cont1
,
cont2
,
mc_label
),
in
enumerate
(
encoded_dataset
):
with_cont1
=
[
start_token
]
+
story
[:
max_len
]
+
[
delimiter_token
]
+
cont1
[:
max_len
]
+
[
clf_token
]
with_cont2
=
[
start_token
]
+
story
[:
max_len
]
+
[
delimiter_token
]
+
cont2
[:
max_len
]
+
[
clf_token
]
xmb
[
i
,
0
,
:
len
(
with_cont1
)]
=
with_cont1
xmb
[
i
,
1
,
:
len
(
with_cont2
)]
=
with_cont2
mc_token_mask
[
i
,
0
,
len
(
with_cont1
)
-
1
]
=
1
lm_labels
[
i
,
0
,
:
len
(
with_cont1
)
-
1
]
=
with_cont1
[
1
:]
lm_labels
[
i
,
1
,
:
len
(
with_cont2
)
-
1
]
=
with_cont2
[
1
:]
mc_labels
[
i
]
=
mc_label
all_inputs
=
(
input_ids
,
mc_token_mask
,
lm_labels
,
mc_labels
)
all_input_tensors
=
list
(
torch
.
tensor
(
t
)
for
t
in
all_inputs
)
return
all_input_tensors
if
__name__
==
'__main__'
:
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
'--model_name'
,
type
=
str
,
default
=
'openai-gpt'
,
help
=
'pretrained model name'
)
parser
.
add_argument
(
'--data_dir'
,
type
=
str
,
default
=
'data/'
)
parser
.
add_argument
(
'--seed'
,
type
=
int
,
default
=
42
)
parser
.
add_argument
(
'--num_train_epochs'
,
type
=
int
,
default
=
3
)
parser
.
add_argument
(
'--train_batch_size'
,
type
=
int
,
default
=
8
)
parser
.
add_argument
(
'--max_grad_norm'
,
type
=
int
,
default
=
1
)
parser
.
add_argument
(
'--learning_rate'
,
type
=
float
,
default
=
6.25e-5
)
parser
.
add_argument
(
'--warmup_proportion'
,
type
=
float
,
default
=
0.002
)
parser
.
add_argument
(
'--max_grad_norm'
,
type
=
float
,
default
=
1
)
parser
.
add_argument
(
'--lr_schedule'
,
type
=
str
,
default
=
'warmup_linear'
)
parser
.
add_argument
(
'--weight_decay'
,
type
=
float
,
default
=
0.01
)
parser
.
add_argument
(
'--lm_coef'
,
type
=
float
,
default
=
0.5
)
parser
.
add_argument
(
'--n_valid'
,
type
=
int
,
default
=
374
)
args
=
parser
.
parse_args
()
print
(
args
)
random
.
seed
(
args
.
seed
)
np
.
random
.
seed
(
args
.
seed
)
torch
.
manual_seed
(
args
.
seed
)
torch
.
cuda
.
manual_seed_all
(
args
.
seed
)
device
=
torch
.
device
(
"cuda"
if
torch
.
cuda
.
is_available
()
else
"cpu"
)
n_gpu
=
torch
.
cuda
.
device_count
()
logger
.
info
(
"device"
,
device
,
"n_gpu"
,
n_gpu
)
# Load tokenizer and model
# This loading functions also add new tokens and embeddings called `special tokens`
# These new embeddings will be fine-tuned on the RocStories dataset
special_tokens
=
[
'_start_'
,
'_delimiter_'
,
'_classify_'
]
tokenizer
=
OpenAIGPTTokenizer
.
from_pretrained
(
args
.
model_name
,
special_tokens
=
special_tokens
)
special_tokens_ids
=
list
(
tokenizer
.
convert_tokens_to_ids
(
token
)
for
token
in
special_tokens
)
model
=
OpenAIGPTDoubleHeadsModel
.
from_pretrained
(
args
.
model_name
,
num_special_tokens
=
len
(
special_tokens
))
# Load the dataset and prepare the inputs
logger
.
info
(
"Encoding dataset..."
)
dataset
=
load_rocstories_dataset
(
args
.
dataset_path
)
tokenized_dataset
=
list
(
list
(
tokenizer
.
tokenize
(
x
)
for
x
in
instance
)
for
instance
in
dataset
)
encoded_dataset
=
list
(
list
(
tokenizer
.
convert_tokens_to_ids
(
x
)
for
x
in
instance
)
for
instance
in
tokenized_dataset
)
max_input_length
=
max
(
len
(
story
)
+
max
(
len
(
cont1
),
len
(
cont2
))
+
3
for
story
,
cont1
,
cont2
,
_
in
encoded_dataset
)
max_input_length
=
min
(
max_input_length
,
model
.
config
.
n_positions
)
# Max size of input for the pre-trained model
max_sub_part_length
=
max_input_length
//
2
-
2
# Prepare dataloader
dataset_tensors
=
pre_process_dataset
(
encoded_dataset
,
max_sub_part_length
,
*
special_tokens_ids
)
train_data
=
TensorDataset
(
*
dataset_tensors
)
train_sampler
=
RandomSampler
(
train_data
)
train_dataloader
=
DataLoader
(
train_data
,
sampler
=
train_sampler
,
batch_size
=
args
.
train_batch_size
)
# Prepare optimizer
param_optimizer
=
list
(
model
.
named_parameters
())
no_decay
=
[
'bias'
,
'LayerNorm.bias'
,
'LayerNorm.weight'
]
optimizer_grouped_parameters
=
[
{
'params'
:
[
p
for
n
,
p
in
param_optimizer
if
not
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay'
:
0.01
},
{
'params'
:
[
p
for
n
,
p
in
param_optimizer
if
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay'
:
0.0
}
]
num_train_optimization_steps
=
len
(
train_data
)
//
args
.
train_batch_size
optimizer
=
OpenAIAdam
(
optimizer_grouped_parameters
,
lr
=
args
.
learning_rate
,
warmup
=
args
.
warmup_proportion
,
max_grad_norm
=
args
.
max_grad_norm
,
weight_decay
=
arsg
.
weight_decay
,
t_total
=
num_train_optimization_steps
)
if
args
.
do_train
:
global_step
=
0
nb_tr_steps
=
0
tr_loss
=
0
model
.
train
()
for
_
in
trange
(
int
(
args
.
num_train_epochs
),
desc
=
"Epoch"
):
tr_loss
=
0
nb_tr_examples
,
nb_tr_steps
=
0
,
0
for
step
,
batch
in
enumerate
(
tqdm
(
train_dataloader
,
desc
=
"Iteration"
)):
batch
=
tuple
(
t
.
to
(
device
)
for
t
in
batch
)
input_ids
,
mc_token_mask
,
lm_labels
,
mc_labels
=
batch
losses
=
model
(
input_ids
,
mc_token_mask
,
lm_labels
,
mc_labels
)
loss
=
args
.
lm_coef
*
losses
[
0
]
+
losses
[
1
]
loss
.
backward
()
tr_loss
+=
loss
.
item
()
nb_tr_examples
+=
input_ids
.
size
(
0
)
nb_tr_steps
+=
1
# Save a trained model
model_to_save
=
model
.
module
if
hasattr
(
model
,
'module'
)
else
model
# Only save the model it-self
output_model_file
=
os
.
path
.
join
(
args
.
output_dir
,
"pytorch_model.bin"
)
if
args
.
do_train
:
torch
.
save
(
model_to_save
.
state_dict
(),
output_model_file
)
# Load a trained model that you have fine-tuned
model_state_dict
=
torch
.
load
(
output_model_file
)
model
=
OpenAIGPTDoubleHeadsModel
(
args
.
mode
,
state_dict
=
model_state_dict
,
num_labels
=
num_labels
)
model
.
to
(
device
)
if
args
.
do_eval
:
eval_examples
=
processor
.
get_dev_examples
(
args
.
data_dir
)
eval_features
=
convert_examples_to_features
(
eval_examples
,
label_list
,
args
.
max_seq_length
,
tokenizer
)
logger
.
info
(
"***** Running evaluation *****"
)
logger
.
info
(
" Num examples = %d"
,
len
(
eval_examples
))
logger
.
info
(
" Batch size = %d"
,
args
.
eval_batch_size
)
all_input_ids
=
torch
.
tensor
([
f
.
input_ids
for
f
in
eval_features
],
dtype
=
torch
.
long
)
all_input_mask
=
torch
.
tensor
([
f
.
input_mask
for
f
in
eval_features
],
dtype
=
torch
.
long
)
all_segment_ids
=
torch
.
tensor
([
f
.
segment_ids
for
f
in
eval_features
],
dtype
=
torch
.
long
)
all_label_ids
=
torch
.
tensor
([
f
.
label_id
for
f
in
eval_features
],
dtype
=
torch
.
long
)
eval_data
=
TensorDataset
(
all_input_ids
,
all_input_mask
,
all_segment_ids
,
all_label_ids
)
# Run prediction for full data
eval_sampler
=
SequentialSampler
(
eval_data
)
eval_dataloader
=
DataLoader
(
eval_data
,
sampler
=
eval_sampler
,
batch_size
=
args
.
eval_batch_size
)
model
.
eval
()
eval_loss
,
eval_accuracy
=
0
,
0
nb_eval_steps
,
nb_eval_examples
=
0
,
0
for
input_ids
,
input_mask
,
segment_ids
,
label_ids
in
tqdm
(
eval_dataloader
,
desc
=
"Evaluating"
):
input_ids
=
input_ids
.
to
(
device
)
input_mask
=
input_mask
.
to
(
device
)
segment_ids
=
segment_ids
.
to
(
device
)
label_ids
=
label_ids
.
to
(
device
)
with
torch
.
no_grad
():
tmp_eval_loss
=
model
(
input_ids
,
segment_ids
,
input_mask
,
label_ids
)
logits
=
model
(
input_ids
,
segment_ids
,
input_mask
)
logits
=
logits
.
detach
().
cpu
().
numpy
()
label_ids
=
label_ids
.
to
(
'cpu'
).
numpy
()
tmp_eval_accuracy
=
accuracy
(
logits
,
label_ids
)
eval_loss
+=
tmp_eval_loss
.
mean
().
item
()
eval_accuracy
+=
tmp_eval_accuracy
nb_eval_examples
+=
input_ids
.
size
(
0
)
nb_eval_steps
+=
1
eval_loss
=
eval_loss
/
nb_eval_steps
eval_accuracy
=
eval_accuracy
/
nb_eval_examples
loss
=
tr_loss
/
nb_tr_steps
if
args
.
do_train
else
None
result
=
{
'eval_loss'
:
eval_loss
,
'eval_accuracy'
:
eval_accuracy
,
'global_step'
:
global_step
,
'loss'
:
loss
}
output_eval_file
=
os
.
path
.
join
(
args
.
output_dir
,
"eval_results.txt"
)
with
open
(
output_eval_file
,
"w"
)
as
writer
:
logger
.
info
(
"***** Eval results *****"
)
for
key
in
sorted
(
result
.
keys
()):
logger
.
info
(
" %s = %s"
,
key
,
str
(
result
[
key
]))
writer
.
write
(
"%s = %s
\n
"
%
(
key
,
str
(
result
[
key
])))
if
__name__
==
"__main__"
:
main
()
n_updates
=
0
n_epochs
=
0
if
dataset
!=
'stsb'
:
trYt
=
trY
if
submit
:
path
=
os
.
path
.
join
(
save_dir
,
desc
,
'best_params'
)
torch
.
save
(
dh_model
.
state_dict
(),
make_path
(
path
))
best_score
=
0
for
i
in
range
(
args
.
n_iter
):
print
(
"running epoch"
,
i
)
run_epoch
()
n_epochs
+=
1
log
(
save_dir
,
desc
)
if
submit
:
path
=
os
.
path
.
join
(
save_dir
,
desc
,
'best_params'
)
dh_model
.
load_state_dict
(
torch
.
load
(
path
))
predict
(
dataset
,
args
.
submission_dir
)
if
args
.
analysis
:
rocstories_analysis
(
data_dir
,
os
.
path
.
join
(
args
.
submission_dir
,
'ROCStories.tsv'
),
os
.
path
.
join
(
log_dir
,
'rocstories.jsonl'
))
examples/
eval_
transfo_xl.py
→
examples/transfo_xl
_eval
.py
View file @
d482e3d7
...
@@ -16,17 +16,15 @@
...
@@ -16,17 +16,15 @@
""" PyTorch Transformer XL model evaluation script.
""" PyTorch Transformer XL model evaluation script.
Adapted from https://github.com/kimiyoung/transformer-xl.
Adapted from https://github.com/kimiyoung/transformer-xl.
In particular https://github.com/kimiyoung/transformer-xl/blob/master/pytorch/eval.py
In particular https://github.com/kimiyoung/transformer-xl/blob/master/pytorch/eval.py
This script with default values evaluates a pretrained Transformer-XL on WikiText 103
"""
"""
from
__future__
import
absolute_import
,
division
,
print_function
,
unicode_literals
from
__future__
import
absolute_import
,
division
,
print_function
,
unicode_literals
import
os
import
functools
import
argparse
import
argparse
import
logging
import
logging
import
time
import
time
import
math
import
math
import
sys
from
io
import
open
import
torch
import
torch
...
@@ -39,10 +37,7 @@ logger = logging.getLogger(__name__)
...
@@ -39,10 +37,7 @@ logger = logging.getLogger(__name__)
parser
=
argparse
.
ArgumentParser
(
description
=
'PyTorch Transformer Language Model'
)
parser
=
argparse
.
ArgumentParser
(
description
=
'PyTorch Transformer Language Model'
)
# parser.add_argument('--data', type=str, default='../data/wikitext-103',
# help='location of the data corpus')
parser
.
add_argument
(
'--model_name'
,
type
=
str
,
default
=
'transfo-xl-wt103'
,
parser
.
add_argument
(
'--model_name'
,
type
=
str
,
default
=
'transfo-xl-wt103'
,
# choices=['transfo-xl-wt103'], #, 'lm1b', 'enwik8', 'text8'],
help
=
'pretrained model name'
)
help
=
'pretrained model name'
)
parser
.
add_argument
(
'--split'
,
type
=
str
,
default
=
'test'
,
parser
.
add_argument
(
'--split'
,
type
=
str
,
default
=
'test'
,
choices
=
[
'all'
,
'valid'
,
'test'
],
choices
=
[
'all'
,
'valid'
,
'test'
],
...
@@ -70,11 +65,11 @@ assert args.ext_len >= 0, 'extended context length must be non-negative'
...
@@ -70,11 +65,11 @@ assert args.ext_len >= 0, 'extended context length must be non-negative'
device
=
torch
.
device
(
"cuda"
if
args
.
cuda
else
"cpu"
)
device
=
torch
.
device
(
"cuda"
if
args
.
cuda
else
"cpu"
)
#
Get logger
#
Load a pre-processed dataset
#
logging = get_logger(os.path.join(args.work_dir, 'log.txt'),
#
You can also build the corpus yourself using TransfoXLCorpus methods
#
log_=not args.no_log)
#
The pre-processing involve computing word frequencies to prepare the Adaptive input and SoftMax
# and tokenizing the dataset
#
Load dataset
#
The pre-processed corpus is a convertion (using the conversion script )
corpus
=
TransfoXLCorpus
.
from_pretrained
(
args
.
model_name
)
corpus
=
TransfoXLCorpus
.
from_pretrained
(
args
.
model_name
)
ntokens
=
len
(
corpus
.
vocab
)
ntokens
=
len
(
corpus
.
vocab
)
...
@@ -83,10 +78,7 @@ va_iter = corpus.get_iterator('valid', args.batch_size, args.tgt_len,
...
@@ -83,10 +78,7 @@ va_iter = corpus.get_iterator('valid', args.batch_size, args.tgt_len,
te_iter
=
corpus
.
get_iterator
(
'test'
,
args
.
batch_size
,
args
.
tgt_len
,
te_iter
=
corpus
.
get_iterator
(
'test'
,
args
.
batch_size
,
args
.
tgt_len
,
device
=
device
,
ext_len
=
args
.
ext_len
)
device
=
device
,
ext_len
=
args
.
ext_len
)
# Load the best saved model.
# Load a pre-trained model
# with open(os.path.join(args.work_dir, 'model.pt'), 'rb') as f:
# model = torch.load(f)
# model.backward_compatible()
model
=
TransfoXLModel
.
from_pretrained
(
args
.
model_name
)
model
=
TransfoXLModel
.
from_pretrained
(
args
.
model_name
)
model
=
model
.
to
(
device
)
model
=
model
.
to
(
device
)
...
@@ -132,10 +124,6 @@ elif args.split == 'test':
...
@@ -132,10 +124,6 @@ elif args.split == 'test':
valid_loss
=
None
valid_loss
=
None
def
format_log
(
loss
,
split
):
def
format_log
(
loss
,
split
):
# if args.dataset in ['enwik8', 'text8']:
# log_str = '| {0} loss {1:5.2f} | {0} bpc {2:9.5f} '.format(
# split, loss, loss / math.log(2))
# else:
log_str
=
'| {0} loss {1:5.2f} | {0} ppl {2:9.3f} '
.
format
(
log_str
=
'| {0} loss {1:5.2f} | {0} ppl {2:9.3f} '
.
format
(
split
,
loss
,
math
.
exp
(
loss
))
split
,
loss
,
math
.
exp
(
loss
))
return
log_str
return
log_str
...
...
examples/transfo_xl_train.py
0 → 100644
View file @
d482e3d7
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HugginFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Transformer XL model training script.
Adapted from https://github.com/kimiyoung/transformer-xl.
In particular https://github.com/kimiyoung/transformer-xl/blob/master/pytorch/eval.py
This script with default values train a Transformer-XL on WikiText 103
"""
from
__future__
import
absolute_import
,
division
,
print_function
,
unicode_literals
import
os
import
functools
import
argparse
import
logging
import
time
import
math
import
sys
from
io
import
open
import
itertools
import
numpy
as
np
import
torch
import
torch.nn
as
nn
import
torch.optim
as
optim
from
pytorch_pretrained_bert
import
TransfoXLModel
,
TransfoXLConfig
from
pytorch_pretrained_bert.tokenization_transfo_xl
import
get_lm_corpus
logging
.
basicConfig
(
format
=
'%(asctime)s - %(levelname)s - %(name)s - %(message)s'
,
datefmt
=
'%m/%d/%Y %H:%M:%S'
,
level
=
logging
.
INFO
)
logger
=
logging
.
getLogger
(
__name__
)
parser
=
argparse
.
ArgumentParser
(
description
=
'PyTorch Transformer Language Model'
)
parser
.
add_argument
(
'--data'
,
type
=
str
,
default
=
'../data/wikitext-103'
,
help
=
'location of the data corpus'
)
parser
.
add_argument
(
'--dataset'
,
type
=
str
,
default
=
'wt103'
,
choices
=
[
'wt103'
,
'lm1b'
,
'enwik8'
,
'text8'
],
help
=
'dataset name'
)
parser
.
add_argument
(
'--n_layer'
,
type
=
int
,
default
=
12
,
help
=
'number of total layers'
)
parser
.
add_argument
(
'--n_head'
,
type
=
int
,
default
=
10
,
help
=
'number of heads'
)
parser
.
add_argument
(
'--d_head'
,
type
=
int
,
default
=
50
,
help
=
'head dimension'
)
parser
.
add_argument
(
'--d_embed'
,
type
=
int
,
default
=-
1
,
help
=
'embedding dimension'
)
parser
.
add_argument
(
'--d_model'
,
type
=
int
,
default
=
500
,
help
=
'model dimension'
)
parser
.
add_argument
(
'--d_inner'
,
type
=
int
,
default
=
1000
,
help
=
'inner dimension in FF'
)
parser
.
add_argument
(
'--dropout'
,
type
=
float
,
default
=
0.0
,
help
=
'global dropout rate'
)
parser
.
add_argument
(
'--dropatt'
,
type
=
float
,
default
=
0.0
,
help
=
'attention probability dropout rate'
)
parser
.
add_argument
(
'--init'
,
default
=
'normal'
,
type
=
str
,
help
=
'parameter initializer to use.'
)
parser
.
add_argument
(
'--emb_init'
,
default
=
'normal'
,
type
=
str
,
help
=
'parameter initializer to use.'
)
parser
.
add_argument
(
'--init_range'
,
type
=
float
,
default
=
0.1
,
help
=
'parameters initialized by U(-init_range, init_range)'
)
parser
.
add_argument
(
'--emb_init_range'
,
type
=
float
,
default
=
0.01
,
help
=
'parameters initialized by U(-init_range, init_range)'
)
parser
.
add_argument
(
'--init_std'
,
type
=
float
,
default
=
0.02
,
help
=
'parameters initialized by N(0, init_std)'
)
parser
.
add_argument
(
'--proj_init_std'
,
type
=
float
,
default
=
0.01
,
help
=
'parameters initialized by N(0, init_std)'
)
parser
.
add_argument
(
'--optim'
,
default
=
'adam'
,
type
=
str
,
choices
=
[
'adam'
,
'sgd'
,
'adagrad'
],
help
=
'optimizer to use.'
)
parser
.
add_argument
(
'--lr'
,
type
=
float
,
default
=
0.00025
,
help
=
'initial learning rate (0.00025|5 for adam|sgd)'
)
parser
.
add_argument
(
'--mom'
,
type
=
float
,
default
=
0.0
,
help
=
'momentum for sgd'
)
parser
.
add_argument
(
'--scheduler'
,
default
=
'cosine'
,
type
=
str
,
choices
=
[
'cosine'
,
'inv_sqrt'
,
'dev_perf'
,
'constant'
],
help
=
'lr scheduler to use.'
)
parser
.
add_argument
(
'--warmup_step'
,
type
=
int
,
default
=
0
,
help
=
'upper epoch limit'
)
parser
.
add_argument
(
'--decay_rate'
,
type
=
float
,
default
=
0.5
,
help
=
'decay factor when ReduceLROnPlateau is used'
)
parser
.
add_argument
(
'--lr_min'
,
type
=
float
,
default
=
0.0
,
help
=
'minimum learning rate during annealing'
)
parser
.
add_argument
(
'--clip'
,
type
=
float
,
default
=
0.25
,
help
=
'gradient clipping'
)
parser
.
add_argument
(
'--clip_nonemb'
,
action
=
'store_true'
,
help
=
'only clip the gradient of non-embedding params'
)
parser
.
add_argument
(
'--max_step'
,
type
=
int
,
default
=
100000
,
help
=
'upper epoch limit'
)
parser
.
add_argument
(
'--batch_size'
,
type
=
int
,
default
=
60
,
help
=
'batch size'
)
parser
.
add_argument
(
'--batch_chunk'
,
type
=
int
,
default
=
1
,
help
=
'split batch into chunks to save memory'
)
parser
.
add_argument
(
'--tgt_len'
,
type
=
int
,
default
=
70
,
help
=
'number of tokens to predict'
)
parser
.
add_argument
(
'--eval_tgt_len'
,
type
=
int
,
default
=
50
,
help
=
'number of tokens to predict for evaluation'
)
parser
.
add_argument
(
'--ext_len'
,
type
=
int
,
default
=
0
,
help
=
'length of the extended context'
)
parser
.
add_argument
(
'--mem_len'
,
type
=
int
,
default
=
0
,
help
=
'length of the retained previous heads'
)
parser
.
add_argument
(
'--not_tied'
,
action
=
'store_true'
,
help
=
'do not tie the word embedding and softmax weights'
)
parser
.
add_argument
(
'--seed'
,
type
=
int
,
default
=
1111
,
help
=
'random seed'
)
parser
.
add_argument
(
'--cuda'
,
action
=
'store_true'
,
help
=
'use CUDA'
)
parser
.
add_argument
(
'--adaptive'
,
action
=
'store_true'
,
help
=
'use adaptive softmax'
)
parser
.
add_argument
(
'--div_val'
,
type
=
int
,
default
=
1
,
help
=
'divident value for adapative input and softmax'
)
parser
.
add_argument
(
'--pre_lnorm'
,
action
=
'store_true'
,
help
=
'apply LayerNorm to the input instead of the output'
)
parser
.
add_argument
(
'--varlen'
,
action
=
'store_true'
,
help
=
'use variable length'
)
parser
.
add_argument
(
'--multi_gpu'
,
action
=
'store_true'
,
help
=
'use multiple GPU'
)
parser
.
add_argument
(
'--log-interval'
,
type
=
int
,
default
=
200
,
help
=
'report interval'
)
parser
.
add_argument
(
'--eval-interval'
,
type
=
int
,
default
=
4000
,
help
=
'evaluation interval'
)
parser
.
add_argument
(
'--work_dir'
,
default
=
'LM-TFM'
,
type
=
str
,
help
=
'experiment directory.'
)
parser
.
add_argument
(
'--restart'
,
action
=
'store_true'
,
help
=
'restart training from the saved checkpoint'
)
parser
.
add_argument
(
'--restart_dir'
,
type
=
str
,
default
=
''
,
help
=
'restart dir'
)
parser
.
add_argument
(
'--debug'
,
action
=
'store_true'
,
help
=
'run in debug mode (do not create exp dir)'
)
parser
.
add_argument
(
'--same_length'
,
action
=
'store_true'
,
help
=
'use the same attn length for all tokens'
)
parser
.
add_argument
(
'--attn_type'
,
type
=
int
,
default
=
0
,
help
=
'attention type. 0 for ours, 1 for Shaw et al,'
'2 for Vaswani et al, 3 for Al Rfou et al.'
)
parser
.
add_argument
(
'--clamp_len'
,
type
=
int
,
default
=-
1
,
help
=
'use the same pos embeddings after clamp_len'
)
parser
.
add_argument
(
'--eta_min'
,
type
=
float
,
default
=
0.0
,
help
=
'min learning rate for cosine scheduler'
)
parser
.
add_argument
(
'--gpu0_bsz'
,
type
=
int
,
default
=-
1
,
help
=
'batch size on gpu 0'
)
parser
.
add_argument
(
'--max_eval_steps'
,
type
=
int
,
default
=-
1
,
help
=
'max eval steps'
)
parser
.
add_argument
(
'--sample_softmax'
,
type
=
int
,
default
=-
1
,
help
=
'number of samples in sampled softmax'
)
parser
.
add_argument
(
'--patience'
,
type
=
int
,
default
=
0
,
help
=
'patience'
)
parser
.
add_argument
(
'--finetune_v2'
,
action
=
'store_true'
,
help
=
'finetune v2'
)
parser
.
add_argument
(
'--finetune_v3'
,
action
=
'store_true'
,
help
=
'finetune v3'
)
parser
.
add_argument
(
'--fp16'
,
action
=
'store_true'
,
help
=
'Run in pseudo-fp16 mode (fp16 storage fp32 math).'
)
parser
.
add_argument
(
'--static-loss-scale'
,
type
=
float
,
default
=
1
,
help
=
'Static loss scale, positive power of 2 values can '
'improve fp16 convergence.'
)
parser
.
add_argument
(
'--dynamic-loss-scale'
,
action
=
'store_true'
,
help
=
'Use dynamic loss scaling. If supplied, this argument'
' supersedes --static-loss-scale.'
)
args
=
parser
.
parse_args
()
args
.
tied
=
not
args
.
not_tied
if
args
.
d_embed
<
0
:
args
.
d_embed
=
args
.
d_model
assert
args
.
ext_len
>=
0
,
'extended context length must be non-negative'
assert
args
.
batch_size
%
args
.
batch_chunk
==
0
args
.
work_dir
=
'{}-{}'
.
format
(
args
.
work_dir
,
args
.
dataset
)
args
.
work_dir
=
os
.
path
.
join
(
args
.
work_dir
,
time
.
strftime
(
'%Y%m%d-%H%M%S'
))
# logging = create_exp_dir(args.work_dir,
# scripts_to_save=['train.py', 'mem_transformer.py'], debug=args.debug)
# Set the random seed manually for reproducibility.
np
.
random
.
seed
(
args
.
seed
)
torch
.
manual_seed
(
args
.
seed
)
if
torch
.
cuda
.
is_available
():
if
not
args
.
cuda
:
print
(
'WARNING: You have a CUDA device, so you should probably run with --cuda'
)
else
:
torch
.
cuda
.
manual_seed_all
(
args
.
seed
)
# Validate `--fp16` option
if
args
.
fp16
:
if
not
args
.
cuda
:
print
(
'WARNING: --fp16 requires --cuda, ignoring --fp16 option'
)
args
.
fp16
=
False
else
:
try
:
from
apex.fp16_utils
import
FP16_Optimizer
except
ImportError
:
print
(
'WARNING: apex not installed, ignoring --fp16 option'
)
args
.
fp16
=
False
device
=
torch
.
device
(
'cuda'
if
args
.
cuda
else
'cpu'
)
###############################################################################
# Load data
###############################################################################
corpus
=
get_lm_corpus
(
args
.
data
,
args
.
dataset
)
ntokens
=
len
(
corpus
.
vocab
)
args
.
n_token
=
ntokens
eval_batch_size
=
10
tr_iter
=
corpus
.
get_iterator
(
'train'
,
args
.
batch_size
,
args
.
tgt_len
,
device
=
device
,
ext_len
=
args
.
ext_len
)
va_iter
=
corpus
.
get_iterator
(
'valid'
,
eval_batch_size
,
args
.
eval_tgt_len
,
device
=
device
,
ext_len
=
args
.
ext_len
)
te_iter
=
corpus
.
get_iterator
(
'test'
,
eval_batch_size
,
args
.
eval_tgt_len
,
device
=
device
,
ext_len
=
args
.
ext_len
)
# adaptive softmax / embedding
cutoffs
=
[]
if
args
.
adaptive
:
assert
args
.
dataset
in
[
'wt103'
,
'lm1b'
]
if
args
.
dataset
==
'wt103'
:
cutoffs
=
[
20000
,
40000
,
200000
]
proj_share_all_but_first
=
True
elif
args
.
dataset
==
'lm1b'
:
cutoffs
=
[
60000
,
100000
,
640000
]
proj_share_all_but_first
=
False
###############################################################################
# Build the model
###############################################################################
def
init_weight
(
weight
):
if
args
.
init
==
'uniform'
:
nn
.
init
.
uniform_
(
weight
,
-
args
.
init_range
,
args
.
init_range
)
elif
args
.
init
==
'normal'
:
nn
.
init
.
normal_
(
weight
,
0.0
,
args
.
init_std
)
def
init_bias
(
bias
):
nn
.
init
.
constant_
(
bias
,
0.0
)
def
weights_init
(
m
):
classname
=
m
.
__class__
.
__name__
if
classname
.
find
(
'Linear'
)
!=
-
1
:
if
hasattr
(
m
,
'weight'
)
and
m
.
weight
is
not
None
:
init_weight
(
m
.
weight
)
if
hasattr
(
m
,
'bias'
)
and
m
.
bias
is
not
None
:
init_bias
(
m
.
bias
)
elif
classname
.
find
(
'AdaptiveEmbedding'
)
!=
-
1
:
if
hasattr
(
m
,
'emb_projs'
):
for
i
in
range
(
len
(
m
.
emb_projs
)):
if
m
.
emb_projs
[
i
]
is
not
None
:
nn
.
init
.
normal_
(
m
.
emb_projs
[
i
],
0.0
,
args
.
proj_init_std
)
elif
classname
.
find
(
'Embedding'
)
!=
-
1
:
if
hasattr
(
m
,
'weight'
):
init_weight
(
m
.
weight
)
elif
classname
.
find
(
'ProjectedAdaptiveLogSoftmax'
)
!=
-
1
:
if
hasattr
(
m
,
'cluster_weight'
)
and
m
.
cluster_weight
is
not
None
:
init_weight
(
m
.
cluster_weight
)
if
hasattr
(
m
,
'cluster_bias'
)
and
m
.
cluster_bias
is
not
None
:
init_bias
(
m
.
cluster_bias
)
if
hasattr
(
m
,
'out_projs'
):
for
i
in
range
(
len
(
m
.
out_projs
)):
if
m
.
out_projs
[
i
]
is
not
None
:
nn
.
init
.
normal_
(
m
.
out_projs
[
i
],
0.0
,
args
.
proj_init_std
)
elif
classname
.
find
(
'LayerNorm'
)
!=
-
1
:
if
hasattr
(
m
,
'weight'
):
nn
.
init
.
normal_
(
m
.
weight
,
1.0
,
args
.
init_std
)
if
hasattr
(
m
,
'bias'
)
and
m
.
bias
is
not
None
:
init_bias
(
m
.
bias
)
elif
classname
.
find
(
'TransformerLM'
)
!=
-
1
:
if
hasattr
(
m
,
'r_emb'
):
init_weight
(
m
.
r_emb
)
if
hasattr
(
m
,
'r_w_bias'
):
init_weight
(
m
.
r_w_bias
)
if
hasattr
(
m
,
'r_r_bias'
):
init_weight
(
m
.
r_r_bias
)
if
hasattr
(
m
,
'r_bias'
):
init_bias
(
m
.
r_bias
)
def
update_dropout
(
m
):
classname
=
m
.
__class__
.
__name__
if
classname
.
find
(
'Dropout'
)
!=
-
1
:
if
hasattr
(
m
,
'p'
):
m
.
p
=
args
.
dropout
def
update_dropatt
(
m
):
if
hasattr
(
m
,
'dropatt'
):
m
.
dropatt
.
p
=
args
.
dropatt
if
args
.
restart
:
with
open
(
os
.
path
.
join
(
args
.
restart_dir
,
'model.pt'
),
'rb'
)
as
f
:
model
=
torch
.
load
(
f
)
if
not
args
.
fp16
:
model
=
model
.
float
()
model
.
apply
(
update_dropout
)
model
.
apply
(
update_dropatt
)
else
:
config
=
TransfoXLConfig
(
ntokens
,
n_layer
=
args
.
n_layer
,
n_head
=
args
.
n_head
,
d_model
=
args
.
d_model
,
d_head
=
args
.
d_head
,
d_inner
=
args
.
d_inner
,
dropout
=
args
.
dropout
,
dropatt
=
args
.
dropatt
,
tie_weight
=
args
.
tied
,
d_embed
=
args
.
d_embed
,
div_val
=
args
.
div_val
,
proj_share_all_but_first
=
proj_share_all_but_first
,
pre_lnorm
=
args
.
pre_lnorm
,
tgt_len
=
args
.
tgt_len
,
ext_len
=
args
.
ext_len
,
mem_len
=
args
.
mem_len
,
cutoffs
=
cutoffs
,
same_length
=
args
.
same_length
,
attn_type
=
args
.
attn_type
,
clamp_len
=
args
.
clamp_len
,
sample_softmax
=
args
.
sample_softmax
)
model
=
TransfoXLModel
(
config
)
model
.
apply
(
weights_init
)
model
.
word_emb
.
apply
(
weights_init
)
# ensure embedding init is not overridden by out_layer in case of weight sharing
args
.
n_all_param
=
sum
([
p
.
nelement
()
for
p
in
model
.
parameters
()])
args
.
n_nonemb_param
=
sum
([
p
.
nelement
()
for
p
in
model
.
layers
.
parameters
()])
if
args
.
fp16
:
model
=
model
.
half
()
if
args
.
multi_gpu
:
model
=
model
.
to
(
device
)
if
args
.
gpu0_bsz
>=
0
:
raise
NotImplementedError
# para_model = BalancedDataParallel(args.gpu0_bsz // args.batch_chunk,
# model, dim=1).to(device)
else
:
para_model
=
nn
.
DataParallel
(
model
,
dim
=
1
).
to
(
device
)
else
:
para_model
=
model
.
to
(
device
)
#### optimizer
if
args
.
optim
.
lower
()
==
'sgd'
:
if
args
.
sample_softmax
>
0
:
dense_params
,
sparse_params
=
[],
[]
for
param
in
model
.
parameters
():
if
param
.
size
()
==
model
.
word_emb
.
weight
.
size
():
sparse_params
.
append
(
param
)
else
:
dense_params
.
append
(
param
)
optimizer_sparse
=
optim
.
SGD
(
sparse_params
,
lr
=
args
.
lr
*
2
)
optimizer
=
optim
.
SGD
(
dense_params
,
lr
=
args
.
lr
,
momentum
=
args
.
mom
)
else
:
optimizer
=
optim
.
SGD
(
model
.
parameters
(),
lr
=
args
.
lr
,
momentum
=
args
.
mom
)
elif
args
.
optim
.
lower
()
==
'adam'
:
if
args
.
sample_softmax
>
0
:
dense_params
,
sparse_params
=
[],
[]
for
param
in
model
.
parameters
():
if
param
.
size
()
==
model
.
word_emb
.
weight
.
size
():
sparse_params
.
append
(
param
)
else
:
dense_params
.
append
(
param
)
optimizer_sparse
=
optim
.
SparseAdam
(
sparse_params
,
lr
=
args
.
lr
)
optimizer
=
optim
.
Adam
(
dense_params
,
lr
=
args
.
lr
)
else
:
optimizer
=
optim
.
Adam
(
model
.
parameters
(),
lr
=
args
.
lr
)
elif
args
.
optim
.
lower
()
==
'adagrad'
:
optimizer
=
optim
.
Adagrad
(
model
.
parameters
(),
lr
=
args
.
lr
)
#### scheduler
if
args
.
scheduler
==
'cosine'
:
# here we do not set eta_min to lr_min to be backward compatible
# because in previous versions eta_min is default to 0
# rather than the default value of lr_min 1e-6
scheduler
=
optim
.
lr_scheduler
.
CosineAnnealingLR
(
optimizer
,
args
.
max_step
,
eta_min
=
args
.
eta_min
)
# should use eta_min arg
if
args
.
sample_softmax
>
0
:
scheduler_sparse
=
optim
.
lr_scheduler
.
CosineAnnealingLR
(
optimizer_sparse
,
args
.
max_step
,
eta_min
=
args
.
eta_min
)
# should use eta_min arg
elif
args
.
scheduler
==
'inv_sqrt'
:
# originally used for Transformer (in Attention is all you need)
def
lr_lambda
(
step
):
# return a multiplier instead of a learning rate
if
step
==
0
and
args
.
warmup_step
==
0
:
return
1.
else
:
return
1.
/
(
step
**
0.5
)
if
step
>
args
.
warmup_step
\
else
step
/
(
args
.
warmup_step
**
1.5
)
scheduler
=
optim
.
lr_scheduler
.
LambdaLR
(
optimizer
,
lr_lambda
=
lr_lambda
)
elif
args
.
scheduler
==
'dev_perf'
:
scheduler
=
optim
.
lr_scheduler
.
ReduceLROnPlateau
(
optimizer
,
factor
=
args
.
decay_rate
,
patience
=
args
.
patience
,
min_lr
=
args
.
lr_min
)
if
args
.
sample_softmax
>
0
:
scheduler_sparse
=
optim
.
lr_scheduler
.
ReduceLROnPlateau
(
optimizer_sparse
,
factor
=
args
.
decay_rate
,
patience
=
args
.
patience
,
min_lr
=
args
.
lr_min
)
elif
args
.
scheduler
==
'constant'
:
pass
if
args
.
cuda
and
args
.
fp16
:
# If args.dynamic_loss_scale is False, static_loss_scale will be used.
# If args.dynamic_loss_scale is True, it will take precedence over static_loss_scale.
optimizer
=
FP16_Optimizer
(
optimizer
,
static_loss_scale
=
args
.
static_loss_scale
,
dynamic_loss_scale
=
args
.
dynamic_loss_scale
,
dynamic_loss_args
=
{
'init_scale'
:
2
**
16
})
if
args
.
restart
:
if
os
.
path
.
exists
(
os
.
path
.
join
(
args
.
restart_dir
,
'optimizer.pt'
)):
with
open
(
os
.
path
.
join
(
args
.
restart_dir
,
'optimizer.pt'
),
'rb'
)
as
f
:
opt_state_dict
=
torch
.
load
(
f
)
optimizer
.
load_state_dict
(
opt_state_dict
)
else
:
print
(
'Optimizer was not saved. Start from scratch.'
)
logger
.
info
(
'='
*
100
)
for
k
,
v
in
args
.
__dict__
.
items
():
logger
.
info
(
' - {} : {}'
.
format
(
k
,
v
))
logger
.
info
(
'='
*
100
)
logger
.
info
(
'#params = {}'
.
format
(
args
.
n_all_param
))
logger
.
info
(
'#non emb params = {}'
.
format
(
args
.
n_nonemb_param
))
###############################################################################
# Training code
###############################################################################
def
evaluate
(
eval_iter
):
# Turn on evaluation mode which disables dropout.
model
.
eval
()
# If the model does not use memory at all, make the ext_len longer.
# Otherwise, make the mem_len longer and keep the ext_len the same.
if
args
.
mem_len
==
0
:
model
.
reset_length
(
args
.
eval_tgt_len
,
args
.
ext_len
+
args
.
tgt_len
-
args
.
eval_tgt_len
,
args
.
mem_len
)
else
:
model
.
reset_length
(
args
.
eval_tgt_len
,
args
.
ext_len
,
args
.
mem_len
+
args
.
tgt_len
-
args
.
eval_tgt_len
)
# Evaluation
total_len
,
total_loss
=
0
,
0.
with
torch
.
no_grad
():
mems
=
tuple
()
for
i
,
(
data
,
target
,
seq_len
)
in
enumerate
(
eval_iter
):
if
args
.
max_eval_steps
>
0
and
i
>=
args
.
max_eval_steps
:
break
ret
=
model
(
data
,
target
,
*
mems
)
loss
,
mems
=
ret
[
0
],
ret
[
1
:]
loss
=
loss
.
mean
()
total_loss
+=
seq_len
*
loss
.
float
().
item
()
total_len
+=
seq_len
# Switch back to the training mode
model
.
reset_length
(
args
.
tgt_len
,
args
.
ext_len
,
args
.
mem_len
)
model
.
train
()
return
total_loss
/
total_len
def
train
():
# Turn on training mode which enables dropout.
global
train_step
,
train_loss
,
best_val_loss
,
eval_start_time
,
log_start_time
model
.
train
()
if
args
.
batch_chunk
>
1
:
mems
=
[
tuple
()
for
_
in
range
(
args
.
batch_chunk
)]
else
:
mems
=
tuple
()
train_iter
=
tr_iter
.
get_varlen_iter
()
if
args
.
varlen
else
tr_iter
for
batch
,
(
data
,
target
,
seq_len
)
in
enumerate
(
train_iter
):
model
.
zero_grad
()
if
args
.
batch_chunk
>
1
:
data_chunks
=
torch
.
chunk
(
data
,
args
.
batch_chunk
,
1
)
target_chunks
=
torch
.
chunk
(
target
,
args
.
batch_chunk
,
1
)
for
i
in
range
(
args
.
batch_chunk
):
data_i
=
data_chunks
[
i
].
contiguous
()
target_i
=
target_chunks
[
i
].
contiguous
()
ret
=
para_model
(
data_i
,
target_i
,
*
mems
[
i
])
loss
,
mems
[
i
]
=
ret
[
0
],
ret
[
1
:]
loss
=
loss
.
float
().
mean
().
type_as
(
loss
)
/
args
.
batch_chunk
if
args
.
fp16
:
optimizer
.
backward
(
loss
)
else
:
loss
.
backward
()
train_loss
+=
loss
.
float
().
item
()
else
:
ret
=
para_model
(
data
,
target
,
*
mems
)
loss
,
mems
=
ret
[
0
],
ret
[
1
:]
loss
=
loss
.
float
().
mean
().
type_as
(
loss
)
if
args
.
fp16
:
optimizer
.
backward
(
loss
)
else
:
loss
.
backward
()
train_loss
+=
loss
.
float
().
item
()
if
args
.
fp16
:
optimizer
.
clip_master_grads
(
args
.
clip
)
else
:
torch
.
nn
.
utils
.
clip_grad_norm_
(
model
.
parameters
(),
args
.
clip
)
optimizer
.
step
()
if
args
.
sample_softmax
>
0
:
optimizer_sparse
.
step
()
# step-wise learning rate annealing
train_step
+=
1
if
args
.
scheduler
in
[
'cosine'
,
'constant'
,
'dev_perf'
]:
# linear warmup stage
if
train_step
<
args
.
warmup_step
:
curr_lr
=
args
.
lr
*
train_step
/
args
.
warmup_step
optimizer
.
param_groups
[
0
][
'lr'
]
=
curr_lr
if
args
.
sample_softmax
>
0
:
optimizer_sparse
.
param_groups
[
0
][
'lr'
]
=
curr_lr
*
2
else
:
if
args
.
scheduler
==
'cosine'
:
scheduler
.
step
(
train_step
)
if
args
.
sample_softmax
>
0
:
scheduler_sparse
.
step
(
train_step
)
elif
args
.
scheduler
==
'inv_sqrt'
:
scheduler
.
step
(
train_step
)
if
train_step
%
args
.
log_interval
==
0
:
cur_loss
=
train_loss
/
args
.
log_interval
elapsed
=
time
.
time
()
-
log_start_time
log_str
=
'| epoch {:3d} step {:>8d} | {:>6d} batches | lr {:.3g} '
\
'| ms/batch {:5.2f} | loss {:5.2f}'
.
format
(
epoch
,
train_step
,
batch
+
1
,
optimizer
.
param_groups
[
0
][
'lr'
],
elapsed
*
1000
/
args
.
log_interval
,
cur_loss
)
if
args
.
dataset
in
[
'enwik8'
,
'text8'
]:
log_str
+=
' | bpc {:9.5f}'
.
format
(
cur_loss
/
math
.
log
(
2
))
else
:
log_str
+=
' | ppl {:9.3f}'
.
format
(
math
.
exp
(
cur_loss
))
logger
.
info
(
log_str
)
train_loss
=
0
log_start_time
=
time
.
time
()
if
train_step
%
args
.
eval_interval
==
0
:
val_loss
=
evaluate
(
va_iter
)
logger
.
info
(
'-'
*
100
)
log_str
=
'| Eval {:3d} at step {:>8d} | time: {:5.2f}s '
\
'| valid loss {:5.2f}'
.
format
(
train_step
//
args
.
eval_interval
,
train_step
,
(
time
.
time
()
-
eval_start_time
),
val_loss
)
if
args
.
dataset
in
[
'enwik8'
,
'text8'
]:
log_str
+=
' | bpc {:9.5f}'
.
format
(
val_loss
/
math
.
log
(
2
))
else
:
log_str
+=
' | valid ppl {:9.3f}'
.
format
(
math
.
exp
(
val_loss
))
logger
.
info
(
log_str
)
logger
.
info
(
'-'
*
100
)
# Save the model if the validation loss is the best we've seen so far.
if
not
best_val_loss
or
val_loss
<
best_val_loss
:
if
not
args
.
debug
:
with
open
(
os
.
path
.
join
(
args
.
work_dir
,
'model.pt'
),
'wb'
)
as
f
:
torch
.
save
(
model
,
f
)
with
open
(
os
.
path
.
join
(
args
.
work_dir
,
'optimizer.pt'
),
'wb'
)
as
f
:
torch
.
save
(
optimizer
.
state_dict
(),
f
)
best_val_loss
=
val_loss
# dev-performance based learning rate annealing
if
args
.
scheduler
==
'dev_perf'
:
scheduler
.
step
(
val_loss
)
if
args
.
sample_softmax
>
0
:
scheduler_sparse
.
step
(
val_loss
)
eval_start_time
=
time
.
time
()
if
train_step
==
args
.
max_step
:
break
# Loop over epochs.
train_step
=
0
train_loss
=
0
best_val_loss
=
None
log_start_time
=
time
.
time
()
eval_start_time
=
time
.
time
()
# At any point you can hit Ctrl + C to break out of training early.
try
:
for
epoch
in
itertools
.
count
(
start
=
1
):
train
()
if
train_step
==
args
.
max_step
:
logger
.
info
(
'-'
*
100
)
logger
.
info
(
'End of training'
)
break
except
KeyboardInterrupt
:
logger
.
info
(
'-'
*
100
)
logger
.
info
(
'Exiting from training early'
)
# Load the best saved model.
with
open
(
os
.
path
.
join
(
args
.
work_dir
,
'model.pt'
),
'rb'
)
as
f
:
model
=
torch
.
load
(
f
)
para_model
=
model
.
to
(
device
)
# Run on test data.
test_loss
=
evaluate
(
te_iter
)
logger
.
info
(
'='
*
100
)
if
args
.
dataset
in
[
'enwik8'
,
'text8'
]:
logger
.
info
(
'| End of training | test loss {:5.2f} | test bpc {:9.5f}'
.
format
(
test_loss
,
test_loss
/
math
.
log
(
2
)))
else
:
logger
.
info
(
'| End of training | test loss {:5.2f} | test ppl {:9.3f}'
.
format
(
test_loss
,
math
.
exp
(
test_loss
)))
logger
.
info
(
'='
*
100
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment