Unverified Commit afc5a1ea authored by Dahlbomii's avatar Dahlbomii Committed by GitHub
Browse files

Type hints added (#16529)

parent 483a9450
...@@ -16,8 +16,9 @@ ...@@ -16,8 +16,9 @@
""" TF 2.0 OpenAI GPT model.""" """ TF 2.0 OpenAI GPT model."""
from dataclasses import dataclass from dataclasses import dataclass
from typing import Optional, Tuple from typing import Optional, Tuple, Union
import numpy as np
import tensorflow as tf import tensorflow as tf
from ...activations_tf import get_tf_activation from ...activations_tf import get_tf_activation
...@@ -25,6 +26,7 @@ from ...modeling_tf_outputs import TFBaseModelOutput, TFCausalLMOutput, TFSequen ...@@ -25,6 +26,7 @@ from ...modeling_tf_outputs import TFBaseModelOutput, TFCausalLMOutput, TFSequen
from ...modeling_tf_utils import ( from ...modeling_tf_utils import (
TFCausalLanguageModelingLoss, TFCausalLanguageModelingLoss,
TFConv1D, TFConv1D,
TFModelInputType,
TFPreTrainedModel, TFPreTrainedModel,
TFSequenceClassificationLoss, TFSequenceClassificationLoss,
TFSequenceSummary, TFSequenceSummary,
...@@ -510,18 +512,18 @@ class TFOpenAIGPTModel(TFOpenAIGPTPreTrainedModel): ...@@ -510,18 +512,18 @@ class TFOpenAIGPTModel(TFOpenAIGPTPreTrainedModel):
) )
def call( def call(
self, self,
input_ids=None, input_ids: Optional[TFModelInputType] = None,
attention_mask=None, attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
token_type_ids=None, token_type_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
position_ids=None, position_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
head_mask=None, head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
inputs_embeds=None, inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
training=False, training: Optional[bool] = False,
**kwargs, **kwargs,
): ) -> Union[Tuple, TFBaseModelOutput]:
outputs = self.transformer( outputs = self.transformer(
input_ids=input_ids, input_ids=input_ids,
...@@ -573,19 +575,19 @@ class TFOpenAIGPTLMHeadModel(TFOpenAIGPTPreTrainedModel, TFCausalLanguageModelin ...@@ -573,19 +575,19 @@ class TFOpenAIGPTLMHeadModel(TFOpenAIGPTPreTrainedModel, TFCausalLanguageModelin
) )
def call( def call(
self, self,
input_ids=None, input_ids: Optional[TFModelInputType] = None,
attention_mask=None, attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
token_type_ids=None, token_type_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
position_ids=None, position_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
head_mask=None, head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
inputs_embeds=None, inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
labels=None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training=False, training: Optional[bool] = False,
**kwargs, **kwargs,
): ) -> Union[Tuple, TFCausalLMOutput]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the cross entropy classification loss. Indices should be in `[0, ..., Labels for computing the cross entropy classification loss. Indices should be in `[0, ...,
...@@ -656,19 +658,19 @@ class TFOpenAIGPTDoubleHeadsModel(TFOpenAIGPTPreTrainedModel): ...@@ -656,19 +658,19 @@ class TFOpenAIGPTDoubleHeadsModel(TFOpenAIGPTPreTrainedModel):
@replace_return_docstrings(output_type=TFOpenAIGPTDoubleHeadsModelOutput, config_class=_CONFIG_FOR_DOC) @replace_return_docstrings(output_type=TFOpenAIGPTDoubleHeadsModelOutput, config_class=_CONFIG_FOR_DOC)
def call( def call(
self, self,
input_ids=None, input_ids: Optional[TFModelInputType] = None,
attention_mask=None, attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
token_type_ids=None, token_type_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
position_ids=None, position_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
head_mask=None, head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
inputs_embeds=None, inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None,
mc_token_ids=None, mc_token_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
training=False, training: Optional[bool] = False,
**kwargs, **kwargs,
): ) -> Union[Tuple, TFOpenAIGPTDoubleHeadsModelOutput]:
r""" r"""
mc_token_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, num_choices)`, *optional*, default to index of the last token of the input): mc_token_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, num_choices)`, *optional*, default to index of the last token of the input):
Index of the classification token in each input sequence. Selected in the range `[0, input_ids.size(-1) - Index of the classification token in each input sequence. Selected in the range `[0, input_ids.size(-1) -
...@@ -800,19 +802,19 @@ class TFOpenAIGPTForSequenceClassification(TFOpenAIGPTPreTrainedModel, TFSequenc ...@@ -800,19 +802,19 @@ class TFOpenAIGPTForSequenceClassification(TFOpenAIGPTPreTrainedModel, TFSequenc
) )
def call( def call(
self, self,
input_ids=None, input_ids: Optional[TFModelInputType] = None,
attention_mask=None, attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
token_type_ids=None, token_type_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
position_ids=None, position_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
head_mask=None, head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
inputs_embeds=None, inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
labels=None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training=False, training: Optional[bool] = False,
**kwargs, **kwargs,
): ) -> Union[Tuple, TFSequenceClassifierOutput]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the cross entropy classification loss. Indices should be in `[0, ..., Labels for computing the cross entropy classification loss. Indices should be in `[0, ...,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment