Unverified Commit afc5a1ea authored by Dahlbomii's avatar Dahlbomii Committed by GitHub
Browse files

Type hints added (#16529)

parent 483a9450
......@@ -16,8 +16,9 @@
""" TF 2.0 OpenAI GPT model."""
from dataclasses import dataclass
from typing import Optional, Tuple
from typing import Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from ...activations_tf import get_tf_activation
......@@ -25,6 +26,7 @@ from ...modeling_tf_outputs import TFBaseModelOutput, TFCausalLMOutput, TFSequen
from ...modeling_tf_utils import (
TFCausalLanguageModelingLoss,
TFConv1D,
TFModelInputType,
TFPreTrainedModel,
TFSequenceClassificationLoss,
TFSequenceSummary,
......@@ -510,18 +512,18 @@ class TFOpenAIGPTModel(TFOpenAIGPTPreTrainedModel):
)
def call(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
training=False,
input_ids: Optional[TFModelInputType] = None,
attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
token_type_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
position_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs,
):
) -> Union[Tuple, TFBaseModelOutput]:
outputs = self.transformer(
input_ids=input_ids,
......@@ -573,19 +575,19 @@ class TFOpenAIGPTLMHeadModel(TFOpenAIGPTPreTrainedModel, TFCausalLanguageModelin
)
def call(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
labels=None,
training=False,
input_ids: Optional[TFModelInputType] = None,
attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
token_type_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
position_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
):
) -> Union[Tuple, TFCausalLMOutput]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the cross entropy classification loss. Indices should be in `[0, ...,
......@@ -656,19 +658,19 @@ class TFOpenAIGPTDoubleHeadsModel(TFOpenAIGPTPreTrainedModel):
@replace_return_docstrings(output_type=TFOpenAIGPTDoubleHeadsModelOutput, config_class=_CONFIG_FOR_DOC)
def call(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
mc_token_ids=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
training=False,
input_ids: Optional[TFModelInputType] = None,
attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
token_type_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
position_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None,
mc_token_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs,
):
) -> Union[Tuple, TFOpenAIGPTDoubleHeadsModelOutput]:
r"""
mc_token_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, num_choices)`, *optional*, default to index of the last token of the input):
Index of the classification token in each input sequence. Selected in the range `[0, input_ids.size(-1) -
......@@ -800,19 +802,19 @@ class TFOpenAIGPTForSequenceClassification(TFOpenAIGPTPreTrainedModel, TFSequenc
)
def call(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
labels=None,
training=False,
input_ids: Optional[TFModelInputType] = None,
attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
token_type_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
position_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
):
) -> Union[Tuple, TFSequenceClassifierOutput]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the cross entropy classification loss. Indices should be in `[0, ...,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment