"...git@developer.sourcefind.cn:chenpangpang/transformers.git" did not exist on "9ca25ce82840c3161b3734ed0914f02b9e6a31f9"
Unverified Commit 6f1727d8 authored by Gunjan Chhablani's avatar Gunjan Chhablani Committed by GitHub
Browse files

Fix Seq2SeqTrainingArguments docs (#16295)

* Indent Seq2Seq Train Args docs

* Add Args keyword to Seq2Seq Train Args docs
parent 7643b1ca
......@@ -27,20 +27,21 @@ logger = logging.getLogger(__name__)
@add_start_docstrings(TrainingArguments.__doc__)
class Seq2SeqTrainingArguments(TrainingArguments):
"""
sortish_sampler (`bool`, *optional*, defaults to `False`):
Whether to use a *sortish sampler* or not. Only possible if the underlying datasets are *Seq2SeqDataset* for
now but will become generally available in the near future.
It sorts the inputs according to lengths in order to minimize the padding size, with a bit of randomness for
the training set.
predict_with_generate (`bool`, *optional*, defaults to `False`):
Whether to use generate to calculate generative metrics (ROUGE, BLEU).
generation_max_length (`int`, *optional*):
The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default to the
`max_length` value of the model configuration.
generation_num_beams (`int`, *optional*):
The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default to the
`num_beams` value of the model configuration.
Args:
sortish_sampler (`bool`, *optional*, defaults to `False`):
Whether to use a *sortish sampler* or not. Only possible if the underlying datasets are *Seq2SeqDataset*
for now but will become generally available in the near future.
It sorts the inputs according to lengths in order to minimize the padding size, with a bit of randomness
for the training set.
predict_with_generate (`bool`, *optional*, defaults to `False`):
Whether to use generate to calculate generative metrics (ROUGE, BLEU).
generation_max_length (`int`, *optional*):
The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default to the
`max_length` value of the model configuration.
generation_num_beams (`int`, *optional*):
The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default to the
`num_beams` value of the model configuration.
"""
sortish_sampler: bool = field(default=False, metadata={"help": "Whether to use SortishSampler or not."})
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment