Unverified Commit 7643b1ca authored by Johnny Greco's avatar Johnny Greco Committed by GitHub
Browse files

Added type hints to PyTorch Longformer models (#16244)

parent c77092a5
......@@ -16,7 +16,7 @@
import math
from dataclasses import dataclass
from typing import Optional, Tuple
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
......@@ -1609,17 +1609,17 @@ class LongformerModel(LongformerPreTrainedModel):
@replace_return_docstrings(output_type=LongformerBaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids=None,
attention_mask=None,
global_attention_mask=None,
head_mask=None,
token_type_ids=None,
position_ids=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
global_attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, LongformerBaseModelOutputWithPooling]:
r"""
Returns:
......@@ -1752,18 +1752,18 @@ class LongformerForMaskedLM(LongformerPreTrainedModel):
@replace_return_docstrings(output_type=LongformerMaskedLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids=None,
attention_mask=None,
global_attention_mask=None,
head_mask=None,
token_type_ids=None,
position_ids=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
global_attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, LongformerMaskedLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
......@@ -1858,18 +1858,18 @@ class LongformerForSequenceClassification(LongformerPreTrainedModel):
)
def forward(
self,
input_ids=None,
attention_mask=None,
global_attention_mask=None,
head_mask=None,
token_type_ids=None,
position_ids=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
global_attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, LongformerSequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
......@@ -1979,19 +1979,19 @@ class LongformerForQuestionAnswering(LongformerPreTrainedModel):
@replace_return_docstrings(output_type=LongformerQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids=None,
attention_mask=None,
global_attention_mask=None,
head_mask=None,
token_type_ids=None,
position_ids=None,
inputs_embeds=None,
start_positions=None,
end_positions=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
global_attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
start_positions: Optional[torch.Tensor] = None,
end_positions: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, LongformerQuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
......@@ -2124,18 +2124,18 @@ class LongformerForTokenClassification(LongformerPreTrainedModel):
)
def forward(
self,
input_ids=None,
attention_mask=None,
global_attention_mask=None,
head_mask=None,
token_type_ids=None,
position_ids=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
global_attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, LongformerTokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
......@@ -2207,18 +2207,18 @@ class LongformerForMultipleChoice(LongformerPreTrainedModel):
)
def forward(
self,
input_ids=None,
token_type_ids=None,
attention_mask=None,
global_attention_mask=None,
head_mask=None,
labels=None,
position_ids=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
input_ids: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
global_attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, LongformerMultipleChoiceModelOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment