Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
3d39226a
Unverified
Commit
3d39226a
authored
Apr 04, 2021
by
Stas Bekman
Committed by
GitHub
Apr 04, 2021
Browse files
s|Pretrained|PreTrained| (#11048)
parent
b0d49fd5
Changes
11
Hide whitespace changes
Inline
Side-by-side
Showing
11 changed files
with
19 additions
and
19 deletions
+19
-19
examples/research_projects/rag/distributed_pytorch_retriever.py
...es/research_projects/rag/distributed_pytorch_retriever.py
+2
-2
examples/research_projects/rag/distributed_ray_retriever.py
examples/research_projects/rag/distributed_ray_retriever.py
+2
-2
src/transformers/generation_beam_search.py
src/transformers/generation_beam_search.py
+4
-4
src/transformers/generation_logits_process.py
src/transformers/generation_logits_process.py
+1
-1
src/transformers/models/ctrl/modeling_ctrl.py
src/transformers/models/ctrl/modeling_ctrl.py
+1
-1
src/transformers/models/encoder_decoder/modeling_encoder_decoder.py
...ormers/models/encoder_decoder/modeling_encoder_decoder.py
+1
-1
src/transformers/models/gpt2/modeling_gpt2.py
src/transformers/models/gpt2/modeling_gpt2.py
+2
-2
src/transformers/models/transfo_xl/modeling_transfo_xl.py
src/transformers/models/transfo_xl/modeling_transfo_xl.py
+2
-2
src/transformers/models/xlnet/modeling_xlnet.py
src/transformers/models/xlnet/modeling_xlnet.py
+2
-2
src/transformers/pipelines/__init__.py
src/transformers/pipelines/__init__.py
+1
-1
src/transformers/tokenization_utils_base.py
src/transformers/tokenization_utils_base.py
+1
-1
No files found.
examples/research_projects/rag/distributed_pytorch_retriever.py
View file @
3d39226a
...
@@ -22,10 +22,10 @@ class RagPyTorchDistributedRetriever(RagRetriever):
...
@@ -22,10 +22,10 @@ class RagPyTorchDistributedRetriever(RagRetriever):
Args:
Args:
config (:class:`~transformers.RagConfig`):
config (:class:`~transformers.RagConfig`):
The configuration of the RAG model this Retriever is used with. Contains parameters indicating which ``Index`` to build.
The configuration of the RAG model this Retriever is used with. Contains parameters indicating which ``Index`` to build.
question_encoder_tokenizer (:class:`~transformers.Pre
t
rainedTokenizer`):
question_encoder_tokenizer (:class:`~transformers.Pre
T
rainedTokenizer`):
The tokenizer that was used to tokenize the question.
The tokenizer that was used to tokenize the question.
It is used to decode the question and then use the generator_tokenizer.
It is used to decode the question and then use the generator_tokenizer.
generator_tokenizer (:class:`~transformers.Pre
t
rainedTokenizer`):
generator_tokenizer (:class:`~transformers.Pre
T
rainedTokenizer`):
The tokenizer used for the generator part of the RagModel.
The tokenizer used for the generator part of the RagModel.
index (:class:`~transformers.models.rag.retrieval_rag.Index`, optional, defaults to the one defined by the configuration):
index (:class:`~transformers.models.rag.retrieval_rag.Index`, optional, defaults to the one defined by the configuration):
If specified, use this index instead of the one built using the configuration
If specified, use this index instead of the one built using the configuration
...
...
examples/research_projects/rag/distributed_ray_retriever.py
View file @
3d39226a
...
@@ -50,10 +50,10 @@ class RagRayDistributedRetriever(RagRetriever):
...
@@ -50,10 +50,10 @@ class RagRayDistributedRetriever(RagRetriever):
Args:
Args:
config (:class:`~transformers.RagConfig`):
config (:class:`~transformers.RagConfig`):
The configuration of the RAG model this Retriever is used with. Contains parameters indicating which ``Index`` to build.
The configuration of the RAG model this Retriever is used with. Contains parameters indicating which ``Index`` to build.
question_encoder_tokenizer (:class:`~transformers.Pre
t
rainedTokenizer`):
question_encoder_tokenizer (:class:`~transformers.Pre
T
rainedTokenizer`):
The tokenizer that was used to tokenize the question.
The tokenizer that was used to tokenize the question.
It is used to decode the question and then use the generator_tokenizer.
It is used to decode the question and then use the generator_tokenizer.
generator_tokenizer (:class:`~transformers.Pre
t
rainedTokenizer`):
generator_tokenizer (:class:`~transformers.Pre
T
rainedTokenizer`):
The tokenizer used for the generator part of the RagModel.
The tokenizer used for the generator part of the RagModel.
retrieval_workers (:obj:`List[ray.ActorClass(RayRetriever)]`): A list of already initialized `RayRetriever` actors.
retrieval_workers (:obj:`List[ray.ActorClass(RayRetriever)]`): A list of already initialized `RayRetriever` actors.
These actor classes run on remote processes and are responsible for performing the index lookup.
These actor classes run on remote processes and are responsible for performing the index lookup.
...
...
src/transformers/generation_beam_search.py
View file @
3d39226a
...
@@ -27,7 +27,7 @@ PROCESS_INPUTS_DOCSTRING = r"""
...
@@ -27,7 +27,7 @@ PROCESS_INPUTS_DOCSTRING = r"""
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size * num_beams, sequence_length)`):
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size * num_beams, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using any class inheriting from :class:`~transformers.Pre
t
rainedTokenizer`. See
Indices can be obtained using any class inheriting from :class:`~transformers.Pre
T
rainedTokenizer`. See
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
details.
details.
...
@@ -60,7 +60,7 @@ FINALIZE_INPUTS_DOCSTRING = r"""
...
@@ -60,7 +60,7 @@ FINALIZE_INPUTS_DOCSTRING = r"""
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size * num_beams, sequence_length)`):
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size * num_beams, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using any class inheriting from :class:`~transformers.Pre
t
rainedTokenizer`. See
Indices can be obtained using any class inheriting from :class:`~transformers.Pre
T
rainedTokenizer`. See
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
details.
details.
...
@@ -86,8 +86,8 @@ FINALIZE_INPUTS_DOCSTRING = r"""
...
@@ -86,8 +86,8 @@ FINALIZE_INPUTS_DOCSTRING = r"""
class
BeamScorer
(
ABC
):
class
BeamScorer
(
ABC
):
"""
"""
Abstract base class for all beam scorers that are used for :meth:`~transformers.Pre
t
rainedModel.beam_search` and
Abstract base class for all beam scorers that are used for :meth:`~transformers.Pre
T
rainedModel.beam_search` and
:meth:`~transformers.Pre
t
rainedModel.beam_sample`.
:meth:`~transformers.Pre
T
rainedModel.beam_sample`.
"""
"""
@
abstractmethod
@
abstractmethod
...
...
src/transformers/generation_logits_process.py
View file @
3d39226a
...
@@ -474,7 +474,7 @@ class PrefixConstrainedLogitsProcessor(LogitsProcessor):
...
@@ -474,7 +474,7 @@ class PrefixConstrainedLogitsProcessor(LogitsProcessor):
class
HammingDiversityLogitsProcessor
(
LogitsProcessor
):
class
HammingDiversityLogitsProcessor
(
LogitsProcessor
):
r
"""
r
"""
:class:`transformers.LogitsProcessor` that enforces diverse beam search. Note that this logits processor is only
:class:`transformers.LogitsProcessor` that enforces diverse beam search. Note that this logits processor is only
effective for :meth:`transformers.Pre
t
rainedModel.group_beam_search`. See `Diverse Beam Search: Decoding Diverse
effective for :meth:`transformers.Pre
T
rainedModel.group_beam_search`. See `Diverse Beam Search: Decoding Diverse
Solutions from Neural Sequence Models <https://arxiv.org/pdf/1610.02424.pdf>`__ for more details.
Solutions from Neural Sequence Models <https://arxiv.org/pdf/1610.02424.pdf>`__ for more details.
Args:
Args:
...
...
src/transformers/models/ctrl/modeling_ctrl.py
View file @
3d39226a
...
@@ -586,7 +586,7 @@ class CTRLLMHeadModel(CTRLPreTrainedModel):
...
@@ -586,7 +586,7 @@ class CTRLLMHeadModel(CTRLPreTrainedModel):
def
_reorder_cache
(
past
:
Tuple
[
Tuple
[
torch
.
Tensor
]],
beam_idx
:
torch
.
Tensor
)
->
Tuple
[
Tuple
[
torch
.
Tensor
]]:
def
_reorder_cache
(
past
:
Tuple
[
Tuple
[
torch
.
Tensor
]],
beam_idx
:
torch
.
Tensor
)
->
Tuple
[
Tuple
[
torch
.
Tensor
]]:
"""
"""
This function is used to re-order the :obj:`past_key_values` cache if
This function is used to re-order the :obj:`past_key_values` cache if
:meth:`~transformers.Pre
t
rainedModel.beam_search` or :meth:`~transformers.Pre
t
rainedModel.beam_sample` is
:meth:`~transformers.Pre
T
rainedModel.beam_search` or :meth:`~transformers.Pre
T
rainedModel.beam_sample` is
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
"""
"""
return
tuple
(
return
tuple
(
...
...
src/transformers/models/encoder_decoder/modeling_encoder_decoder.py
View file @
3d39226a
...
@@ -89,7 +89,7 @@ ENCODER_DECODER_INPUTS_DOCSTRING = r"""
...
@@ -89,7 +89,7 @@ ENCODER_DECODER_INPUTS_DOCSTRING = r"""
:obj:`past_key_values`).
:obj:`past_key_values`).
Provide for sequence to sequence training to the decoder. Indices can be obtained using
Provide for sequence to sequence training to the decoder. Indices can be obtained using
:class:`~transformers.Pre
t
rainedTokenizer`. See :meth:`transformers.PreTrainedTokenizer.encode` and
:class:`~transformers.Pre
T
rainedTokenizer`. See :meth:`transformers.PreTrainedTokenizer.encode` and
:meth:`transformers.PreTrainedTokenizer.__call__` for details.
:meth:`transformers.PreTrainedTokenizer.__call__` for details.
decoder_attention_mask (:obj:`torch.BoolTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`):
decoder_attention_mask (:obj:`torch.BoolTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`):
Default behavior: generate a tensor that ignores pad tokens in :obj:`decoder_input_ids`. Causal mask will
Default behavior: generate a tensor that ignores pad tokens in :obj:`decoder_input_ids`. Causal mask will
...
...
src/transformers/models/gpt2/modeling_gpt2.py
View file @
3d39226a
...
@@ -951,7 +951,7 @@ class GPT2LMHeadModel(GPT2PreTrainedModel):
...
@@ -951,7 +951,7 @@ class GPT2LMHeadModel(GPT2PreTrainedModel):
def
_reorder_cache
(
past
:
Tuple
[
Tuple
[
torch
.
Tensor
]],
beam_idx
:
torch
.
Tensor
)
->
Tuple
[
Tuple
[
torch
.
Tensor
]]:
def
_reorder_cache
(
past
:
Tuple
[
Tuple
[
torch
.
Tensor
]],
beam_idx
:
torch
.
Tensor
)
->
Tuple
[
Tuple
[
torch
.
Tensor
]]:
"""
"""
This function is used to re-order the :obj:`past_key_values` cache if
This function is used to re-order the :obj:`past_key_values` cache if
:meth:`~transformers.Pre
t
rainedModel.beam_search` or :meth:`~transformers.Pre
t
rainedModel.beam_sample` is
:meth:`~transformers.Pre
T
rainedModel.beam_search` or :meth:`~transformers.Pre
T
rainedModel.beam_sample` is
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
"""
"""
return
tuple
(
return
tuple
(
...
@@ -1157,7 +1157,7 @@ class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
...
@@ -1157,7 +1157,7 @@ class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
def
_reorder_cache
(
past
:
Tuple
[
Tuple
[
torch
.
Tensor
]],
beam_idx
:
torch
.
Tensor
)
->
Tuple
[
Tuple
[
torch
.
Tensor
]]:
def
_reorder_cache
(
past
:
Tuple
[
Tuple
[
torch
.
Tensor
]],
beam_idx
:
torch
.
Tensor
)
->
Tuple
[
Tuple
[
torch
.
Tensor
]]:
"""
"""
This function is used to re-order the :obj:`past_key_values` cache if
This function is used to re-order the :obj:`past_key_values` cache if
:meth:`~transformers.Pre
t
rainedModel.beam_search` or :meth:`~transformers.Pre
t
rainedModel.beam_sample` is
:meth:`~transformers.Pre
T
rainedModel.beam_search` or :meth:`~transformers.Pre
T
rainedModel.beam_sample` is
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
"""
"""
return
tuple
(
return
tuple
(
...
...
src/transformers/models/transfo_xl/modeling_transfo_xl.py
View file @
3d39226a
...
@@ -1141,8 +1141,8 @@ class TransfoXLLMHeadModel(TransfoXLPreTrainedModel):
...
@@ -1141,8 +1141,8 @@ class TransfoXLLMHeadModel(TransfoXLPreTrainedModel):
@
staticmethod
@
staticmethod
def
_reorder_cache
(
mems
:
List
[
torch
.
Tensor
],
beam_idx
:
torch
.
Tensor
)
->
List
[
torch
.
Tensor
]:
def
_reorder_cache
(
mems
:
List
[
torch
.
Tensor
],
beam_idx
:
torch
.
Tensor
)
->
List
[
torch
.
Tensor
]:
"""
"""
This function is used to re-order the :obj:`mems` cache if :meth:`~transformers.Pre
t
rainedModel.beam_search` or
This function is used to re-order the :obj:`mems` cache if :meth:`~transformers.Pre
T
rainedModel.beam_search` or
:meth:`~transformers.Pre
t
rainedModel.beam_sample` is called. This is required to match :obj:`mems` with the
:meth:`~transformers.Pre
T
rainedModel.beam_sample` is called. This is required to match :obj:`mems` with the
correct beam_idx at every generation step.
correct beam_idx at every generation step.
"""
"""
return
[
layer_past
.
index_select
(
1
,
beam_idx
.
to
(
layer_past
.
device
))
for
layer_past
in
mems
]
return
[
layer_past
.
index_select
(
1
,
beam_idx
.
to
(
layer_past
.
device
))
for
layer_past
in
mems
]
...
...
src/transformers/models/xlnet/modeling_xlnet.py
View file @
3d39226a
...
@@ -1470,8 +1470,8 @@ class XLNetLMHeadModel(XLNetPreTrainedModel):
...
@@ -1470,8 +1470,8 @@ class XLNetLMHeadModel(XLNetPreTrainedModel):
@
staticmethod
@
staticmethod
def
_reorder_cache
(
mems
:
List
[
torch
.
Tensor
],
beam_idx
:
torch
.
Tensor
)
->
List
[
torch
.
Tensor
]:
def
_reorder_cache
(
mems
:
List
[
torch
.
Tensor
],
beam_idx
:
torch
.
Tensor
)
->
List
[
torch
.
Tensor
]:
"""
"""
This function is used to re-order the :obj:`mems` cache if :meth:`~transformers.Pre
t
rainedModel.beam_search` or
This function is used to re-order the :obj:`mems` cache if :meth:`~transformers.Pre
T
rainedModel.beam_search` or
:meth:`~transformers.Pre
t
rainedModel.beam_sample` is called. This is required to match :obj:`mems` with the
:meth:`~transformers.Pre
T
rainedModel.beam_sample` is called. This is required to match :obj:`mems` with the
correct beam_idx at every generation step.
correct beam_idx at every generation step.
"""
"""
return
[
layer_past
.
index_select
(
1
,
beam_idx
.
to
(
layer_past
.
device
))
for
layer_past
in
mems
]
return
[
layer_past
.
index_select
(
1
,
beam_idx
.
to
(
layer_past
.
device
))
for
layer_past
in
mems
]
...
...
src/transformers/pipelines/__init__.py
View file @
3d39226a
...
@@ -351,7 +351,7 @@ def pipeline(
...
@@ -351,7 +351,7 @@ def pipeline(
# Impossible to guest what is the right tokenizer here
# Impossible to guest what is the right tokenizer here
raise
Exception
(
raise
Exception
(
"Impossible to guess which tokenizer to use. "
"Impossible to guess which tokenizer to use. "
"Please provided a Pre
t
rainedTokenizer class or a path/identifier to a pretrained tokenizer."
"Please provided a Pre
T
rainedTokenizer class or a path/identifier to a pretrained tokenizer."
)
)
modelcard
=
None
modelcard
=
None
...
...
src/transformers/tokenization_utils_base.py
View file @
3d39226a
...
@@ -1930,7 +1930,7 @@ class PreTrainedTokenizerBase(SpecialTokensMixin):
...
@@ -1930,7 +1930,7 @@ class PreTrainedTokenizerBase(SpecialTokensMixin):
"""
"""
if
not
legacy_format
:
if
not
legacy_format
:
raise
ValueError
(
raise
ValueError
(
"Only fast tokenizers (instances of Pre
t
rainedTokenizerFast) can be saved in non legacy format."
"Only fast tokenizers (instances of Pre
T
rainedTokenizerFast) can be saved in non legacy format."
)
)
save_directory
=
str
(
save_directory
)
save_directory
=
str
(
save_directory
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment