Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
3d39226a
Unverified
Commit
3d39226a
authored
Apr 04, 2021
by
Stas Bekman
Committed by
GitHub
Apr 04, 2021
Browse files
s|Pretrained|PreTrained| (#11048)
parent
b0d49fd5
Changes
11
Hide whitespace changes
Inline
Side-by-side
Showing
11 changed files
with
19 additions
and
19 deletions
+19
-19
examples/research_projects/rag/distributed_pytorch_retriever.py
...es/research_projects/rag/distributed_pytorch_retriever.py
+2
-2
examples/research_projects/rag/distributed_ray_retriever.py
examples/research_projects/rag/distributed_ray_retriever.py
+2
-2
src/transformers/generation_beam_search.py
src/transformers/generation_beam_search.py
+4
-4
src/transformers/generation_logits_process.py
src/transformers/generation_logits_process.py
+1
-1
src/transformers/models/ctrl/modeling_ctrl.py
src/transformers/models/ctrl/modeling_ctrl.py
+1
-1
src/transformers/models/encoder_decoder/modeling_encoder_decoder.py
...ormers/models/encoder_decoder/modeling_encoder_decoder.py
+1
-1
src/transformers/models/gpt2/modeling_gpt2.py
src/transformers/models/gpt2/modeling_gpt2.py
+2
-2
src/transformers/models/transfo_xl/modeling_transfo_xl.py
src/transformers/models/transfo_xl/modeling_transfo_xl.py
+2
-2
src/transformers/models/xlnet/modeling_xlnet.py
src/transformers/models/xlnet/modeling_xlnet.py
+2
-2
src/transformers/pipelines/__init__.py
src/transformers/pipelines/__init__.py
+1
-1
src/transformers/tokenization_utils_base.py
src/transformers/tokenization_utils_base.py
+1
-1
No files found.
examples/research_projects/rag/distributed_pytorch_retriever.py
View file @
3d39226a
...
...
@@ -22,10 +22,10 @@ class RagPyTorchDistributedRetriever(RagRetriever):
Args:
config (:class:`~transformers.RagConfig`):
The configuration of the RAG model this Retriever is used with. Contains parameters indicating which ``Index`` to build.
question_encoder_tokenizer (:class:`~transformers.Pre
t
rainedTokenizer`):
question_encoder_tokenizer (:class:`~transformers.Pre
T
rainedTokenizer`):
The tokenizer that was used to tokenize the question.
It is used to decode the question and then use the generator_tokenizer.
generator_tokenizer (:class:`~transformers.Pre
t
rainedTokenizer`):
generator_tokenizer (:class:`~transformers.Pre
T
rainedTokenizer`):
The tokenizer used for the generator part of the RagModel.
index (:class:`~transformers.models.rag.retrieval_rag.Index`, optional, defaults to the one defined by the configuration):
If specified, use this index instead of the one built using the configuration
...
...
examples/research_projects/rag/distributed_ray_retriever.py
View file @
3d39226a
...
...
@@ -50,10 +50,10 @@ class RagRayDistributedRetriever(RagRetriever):
Args:
config (:class:`~transformers.RagConfig`):
The configuration of the RAG model this Retriever is used with. Contains parameters indicating which ``Index`` to build.
question_encoder_tokenizer (:class:`~transformers.Pre
t
rainedTokenizer`):
question_encoder_tokenizer (:class:`~transformers.Pre
T
rainedTokenizer`):
The tokenizer that was used to tokenize the question.
It is used to decode the question and then use the generator_tokenizer.
generator_tokenizer (:class:`~transformers.Pre
t
rainedTokenizer`):
generator_tokenizer (:class:`~transformers.Pre
T
rainedTokenizer`):
The tokenizer used for the generator part of the RagModel.
retrieval_workers (:obj:`List[ray.ActorClass(RayRetriever)]`): A list of already initialized `RayRetriever` actors.
These actor classes run on remote processes and are responsible for performing the index lookup.
...
...
src/transformers/generation_beam_search.py
View file @
3d39226a
...
...
@@ -27,7 +27,7 @@ PROCESS_INPUTS_DOCSTRING = r"""
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size * num_beams, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using any class inheriting from :class:`~transformers.Pre
t
rainedTokenizer`. See
Indices can be obtained using any class inheriting from :class:`~transformers.Pre
T
rainedTokenizer`. See
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
details.
...
...
@@ -60,7 +60,7 @@ FINALIZE_INPUTS_DOCSTRING = r"""
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size * num_beams, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using any class inheriting from :class:`~transformers.Pre
t
rainedTokenizer`. See
Indices can be obtained using any class inheriting from :class:`~transformers.Pre
T
rainedTokenizer`. See
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
details.
...
...
@@ -86,8 +86,8 @@ FINALIZE_INPUTS_DOCSTRING = r"""
class
BeamScorer
(
ABC
):
"""
Abstract base class for all beam scorers that are used for :meth:`~transformers.Pre
t
rainedModel.beam_search` and
:meth:`~transformers.Pre
t
rainedModel.beam_sample`.
Abstract base class for all beam scorers that are used for :meth:`~transformers.Pre
T
rainedModel.beam_search` and
:meth:`~transformers.Pre
T
rainedModel.beam_sample`.
"""
@
abstractmethod
...
...
src/transformers/generation_logits_process.py
View file @
3d39226a
...
...
@@ -474,7 +474,7 @@ class PrefixConstrainedLogitsProcessor(LogitsProcessor):
class
HammingDiversityLogitsProcessor
(
LogitsProcessor
):
r
"""
:class:`transformers.LogitsProcessor` that enforces diverse beam search. Note that this logits processor is only
effective for :meth:`transformers.Pre
t
rainedModel.group_beam_search`. See `Diverse Beam Search: Decoding Diverse
effective for :meth:`transformers.Pre
T
rainedModel.group_beam_search`. See `Diverse Beam Search: Decoding Diverse
Solutions from Neural Sequence Models <https://arxiv.org/pdf/1610.02424.pdf>`__ for more details.
Args:
...
...
src/transformers/models/ctrl/modeling_ctrl.py
View file @
3d39226a
...
...
@@ -586,7 +586,7 @@ class CTRLLMHeadModel(CTRLPreTrainedModel):
def
_reorder_cache
(
past
:
Tuple
[
Tuple
[
torch
.
Tensor
]],
beam_idx
:
torch
.
Tensor
)
->
Tuple
[
Tuple
[
torch
.
Tensor
]]:
"""
This function is used to re-order the :obj:`past_key_values` cache if
:meth:`~transformers.Pre
t
rainedModel.beam_search` or :meth:`~transformers.Pre
t
rainedModel.beam_sample` is
:meth:`~transformers.Pre
T
rainedModel.beam_search` or :meth:`~transformers.Pre
T
rainedModel.beam_sample` is
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
"""
return
tuple
(
...
...
src/transformers/models/encoder_decoder/modeling_encoder_decoder.py
View file @
3d39226a
...
...
@@ -89,7 +89,7 @@ ENCODER_DECODER_INPUTS_DOCSTRING = r"""
:obj:`past_key_values`).
Provide for sequence to sequence training to the decoder. Indices can be obtained using
:class:`~transformers.Pre
t
rainedTokenizer`. See :meth:`transformers.PreTrainedTokenizer.encode` and
:class:`~transformers.Pre
T
rainedTokenizer`. See :meth:`transformers.PreTrainedTokenizer.encode` and
:meth:`transformers.PreTrainedTokenizer.__call__` for details.
decoder_attention_mask (:obj:`torch.BoolTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`):
Default behavior: generate a tensor that ignores pad tokens in :obj:`decoder_input_ids`. Causal mask will
...
...
src/transformers/models/gpt2/modeling_gpt2.py
View file @
3d39226a
...
...
@@ -951,7 +951,7 @@ class GPT2LMHeadModel(GPT2PreTrainedModel):
def
_reorder_cache
(
past
:
Tuple
[
Tuple
[
torch
.
Tensor
]],
beam_idx
:
torch
.
Tensor
)
->
Tuple
[
Tuple
[
torch
.
Tensor
]]:
"""
This function is used to re-order the :obj:`past_key_values` cache if
:meth:`~transformers.Pre
t
rainedModel.beam_search` or :meth:`~transformers.Pre
t
rainedModel.beam_sample` is
:meth:`~transformers.Pre
T
rainedModel.beam_search` or :meth:`~transformers.Pre
T
rainedModel.beam_sample` is
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
"""
return
tuple
(
...
...
@@ -1157,7 +1157,7 @@ class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
def
_reorder_cache
(
past
:
Tuple
[
Tuple
[
torch
.
Tensor
]],
beam_idx
:
torch
.
Tensor
)
->
Tuple
[
Tuple
[
torch
.
Tensor
]]:
"""
This function is used to re-order the :obj:`past_key_values` cache if
:meth:`~transformers.Pre
t
rainedModel.beam_search` or :meth:`~transformers.Pre
t
rainedModel.beam_sample` is
:meth:`~transformers.Pre
T
rainedModel.beam_search` or :meth:`~transformers.Pre
T
rainedModel.beam_sample` is
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
"""
return
tuple
(
...
...
src/transformers/models/transfo_xl/modeling_transfo_xl.py
View file @
3d39226a
...
...
@@ -1141,8 +1141,8 @@ class TransfoXLLMHeadModel(TransfoXLPreTrainedModel):
@
staticmethod
def
_reorder_cache
(
mems
:
List
[
torch
.
Tensor
],
beam_idx
:
torch
.
Tensor
)
->
List
[
torch
.
Tensor
]:
"""
This function is used to re-order the :obj:`mems` cache if :meth:`~transformers.Pre
t
rainedModel.beam_search` or
:meth:`~transformers.Pre
t
rainedModel.beam_sample` is called. This is required to match :obj:`mems` with the
This function is used to re-order the :obj:`mems` cache if :meth:`~transformers.Pre
T
rainedModel.beam_search` or
:meth:`~transformers.Pre
T
rainedModel.beam_sample` is called. This is required to match :obj:`mems` with the
correct beam_idx at every generation step.
"""
return
[
layer_past
.
index_select
(
1
,
beam_idx
.
to
(
layer_past
.
device
))
for
layer_past
in
mems
]
...
...
src/transformers/models/xlnet/modeling_xlnet.py
View file @
3d39226a
...
...
@@ -1470,8 +1470,8 @@ class XLNetLMHeadModel(XLNetPreTrainedModel):
@
staticmethod
def
_reorder_cache
(
mems
:
List
[
torch
.
Tensor
],
beam_idx
:
torch
.
Tensor
)
->
List
[
torch
.
Tensor
]:
"""
This function is used to re-order the :obj:`mems` cache if :meth:`~transformers.Pre
t
rainedModel.beam_search` or
:meth:`~transformers.Pre
t
rainedModel.beam_sample` is called. This is required to match :obj:`mems` with the
This function is used to re-order the :obj:`mems` cache if :meth:`~transformers.Pre
T
rainedModel.beam_search` or
:meth:`~transformers.Pre
T
rainedModel.beam_sample` is called. This is required to match :obj:`mems` with the
correct beam_idx at every generation step.
"""
return
[
layer_past
.
index_select
(
1
,
beam_idx
.
to
(
layer_past
.
device
))
for
layer_past
in
mems
]
...
...
src/transformers/pipelines/__init__.py
View file @
3d39226a
...
...
@@ -351,7 +351,7 @@ def pipeline(
# Impossible to guest what is the right tokenizer here
raise
Exception
(
"Impossible to guess which tokenizer to use. "
"Please provided a Pre
t
rainedTokenizer class or a path/identifier to a pretrained tokenizer."
"Please provided a Pre
T
rainedTokenizer class or a path/identifier to a pretrained tokenizer."
)
modelcard
=
None
...
...
src/transformers/tokenization_utils_base.py
View file @
3d39226a
...
...
@@ -1930,7 +1930,7 @@ class PreTrainedTokenizerBase(SpecialTokensMixin):
"""
if
not
legacy_format
:
raise
ValueError
(
"Only fast tokenizers (instances of Pre
t
rainedTokenizerFast) can be saved in non legacy format."
"Only fast tokenizers (instances of Pre
T
rainedTokenizerFast) can be saved in non legacy format."
)
save_directory
=
str
(
save_directory
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment