Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
378142af
Unverified
Commit
378142af
authored
Oct 28, 2020
by
Sylvain Gugger
Committed by
GitHub
Oct 28, 2020
Browse files
Rename add_start_docstrings_to_callable (#8120)
parent
6241c873
Changes
55
Hide whitespace changes
Inline
Side-by-side
Showing
15 changed files
with
96 additions
and
84 deletions
+96
-84
src/transformers/modeling_tf_gpt2.py
src/transformers/modeling_tf_gpt2.py
+4
-4
src/transformers/modeling_tf_longformer.py
src/transformers/modeling_tf_longformer.py
+4
-4
src/transformers/modeling_tf_lxmert.py
src/transformers/modeling_tf_lxmert.py
+3
-3
src/transformers/modeling_tf_mobilebert.py
src/transformers/modeling_tf_mobilebert.py
+11
-9
src/transformers/modeling_tf_openai.py
src/transformers/modeling_tf_openai.py
+4
-4
src/transformers/modeling_tf_roberta.py
src/transformers/modeling_tf_roberta.py
+7
-7
src/transformers/modeling_tf_t5.py
src/transformers/modeling_tf_t5.py
+3
-3
src/transformers/modeling_tf_transfo_xl.py
src/transformers/modeling_tf_transfo_xl.py
+8
-3
src/transformers/modeling_tf_xlm.py
src/transformers/modeling_tf_xlm.py
+7
-7
src/transformers/modeling_tf_xlnet.py
src/transformers/modeling_tf_xlnet.py
+7
-7
src/transformers/modeling_transfo_xl.py
src/transformers/modeling_transfo_xl.py
+8
-3
src/transformers/modeling_xlm.py
src/transformers/modeling_xlm.py
+8
-8
src/transformers/modeling_xlnet.py
src/transformers/modeling_xlnet.py
+8
-8
templates/adding_a_new_model/modeling_tf_xxx.py
templates/adding_a_new_model/modeling_tf_xxx.py
+7
-7
templates/adding_a_new_model/modeling_xxx.py
templates/adding_a_new_model/modeling_xxx.py
+7
-7
No files found.
src/transformers/modeling_tf_gpt2.py
View file @
378142af
...
...
@@ -27,7 +27,7 @@ from .file_utils import (
ModelOutput
,
add_code_sample_docstrings
,
add_start_docstrings
,
add_start_docstrings_to_
callable
,
add_start_docstrings_to_
model_forward
,
replace_return_docstrings
,
)
from
.modeling_tf_outputs
import
TFBaseModelOutputWithPast
,
TFCausalLMOutputWithPast
...
...
@@ -557,7 +557,7 @@ class TFGPT2Model(TFGPT2PreTrainedModel):
super
().
__init__
(
config
,
*
inputs
,
**
kwargs
)
self
.
transformer
=
TFGPT2MainLayer
(
config
,
name
=
"transformer"
)
@
add_start_docstrings_to_
callable
(
GPT2_INPUTS_DOCSTRING
)
@
add_start_docstrings_to_
model_forward
(
GPT2_INPUTS_DOCSTRING
)
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"gpt2"
,
...
...
@@ -591,7 +591,7 @@ class TFGPT2LMHeadModel(TFGPT2PreTrainedModel, TFCausalLanguageModelingLoss):
return
{
"inputs"
:
inputs
,
"past"
:
past
,
"use_cache"
:
kwargs
[
"use_cache"
]}
@
add_start_docstrings_to_
callable
(
GPT2_INPUTS_DOCSTRING
)
@
add_start_docstrings_to_
model_forward
(
GPT2_INPUTS_DOCSTRING
)
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"gpt2"
,
...
...
@@ -687,7 +687,7 @@ class TFGPT2DoubleHeadsModel(TFGPT2PreTrainedModel):
def
get_output_embeddings
(
self
):
return
self
.
transformer
.
wte
@
add_start_docstrings_to_
callable
(
GPT2_INPUTS_DOCSTRING
)
@
add_start_docstrings_to_
model_forward
(
GPT2_INPUTS_DOCSTRING
)
@
replace_return_docstrings
(
output_type
=
TFGPT2DoubleHeadsModelOutput
,
config_class
=
_CONFIG_FOR_DOC
)
def
call
(
self
,
...
...
src/transformers/modeling_tf_longformer.py
View file @
378142af
...
...
@@ -19,7 +19,7 @@ import tensorflow as tf
from
transformers.activations_tf
import
get_tf_activation
from
.configuration_longformer
import
LongformerConfig
from
.file_utils
import
add_code_sample_docstrings
,
add_start_docstrings
,
add_start_docstrings_to_
callable
from
.file_utils
import
add_code_sample_docstrings
,
add_start_docstrings
,
add_start_docstrings_to_
model_forward
from
.modeling_tf_outputs
import
(
TFBaseModelOutput
,
TFBaseModelOutputWithPooling
,
...
...
@@ -1624,7 +1624,7 @@ class TFLongformerModel(TFLongformerPreTrainedModel):
self
.
longformer
=
TFLongformerMainLayer
(
config
,
name
=
"longformer"
)
@
add_start_docstrings_to_
callable
(
LONGFORMER_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
LONGFORMER_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
def
call
(
self
,
inputs
,
**
kwargs
):
outputs
=
self
.
longformer
(
inputs
,
**
kwargs
)
...
...
@@ -1648,7 +1648,7 @@ class TFLongformerForMaskedLM(TFLongformerPreTrainedModel, TFMaskedLanguageModel
def
get_output_embeddings
(
self
):
return
self
.
lm_head
.
decoder
@
add_start_docstrings_to_
callable
(
LONGFORMER_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
LONGFORMER_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"allenai/longformer-base-4096"
,
...
...
@@ -1736,7 +1736,7 @@ class TFLongformerForQuestionAnswering(TFLongformerPreTrainedModel, TFQuestionAn
name
=
"qa_outputs"
,
)
@
add_start_docstrings_to_
callable
(
LONGFORMER_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
LONGFORMER_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"allenai/longformer-large-4096-finetuned-triviaqa"
,
...
...
src/transformers/modeling_tf_lxmert.py
View file @
378142af
...
...
@@ -28,7 +28,7 @@ from .file_utils import (
ModelOutput
,
add_code_sample_docstrings
,
add_start_docstrings
,
add_start_docstrings_to_
callable
,
add_start_docstrings_to_
model_forward
,
replace_return_docstrings
,
)
from
.modeling_tf_utils
import
TFPreTrainedModel
,
get_initializer
,
keras_serializable
,
shape_list
...
...
@@ -970,7 +970,7 @@ class TFLxmertModel(TFLxmertPreTrainedModel):
super
().
__init__
(
config
,
*
inputs
,
**
kwargs
)
self
.
lxmert
=
TFLxmertMainLayer
(
config
,
name
=
"lxmert"
)
@
add_start_docstrings_to_
callable
(
LXMERT_INPUTS_DOCSTRING
)
@
add_start_docstrings_to_
model_forward
(
LXMERT_INPUTS_DOCSTRING
)
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"unc-nlp/lxmert-base-uncased"
,
...
...
@@ -1224,7 +1224,7 @@ class TFLxmertForPreTraining(TFLxmertPreTrainedModel):
**
({
"obj_labels"
:
obj_labels
}
if
self
.
config
.
task_obj_predict
else
{}),
}
@
add_start_docstrings_to_
callable
(
LXMERT_INPUTS_DOCSTRING
)
@
add_start_docstrings_to_
model_forward
(
LXMERT_INPUTS_DOCSTRING
)
@
replace_return_docstrings
(
output_type
=
TFLxmertForPreTrainingOutput
,
config_class
=
_CONFIG_FOR_DOC
)
def
call
(
self
,
...
...
src/transformers/modeling_tf_mobilebert.py
View file @
378142af
...
...
@@ -28,7 +28,7 @@ from .file_utils import (
ModelOutput
,
add_code_sample_docstrings
,
add_start_docstrings
,
add_start_docstrings_to_
callable
,
add_start_docstrings_to_
model_forward
,
replace_return_docstrings
,
)
from
.modeling_tf_outputs
import
(
...
...
@@ -960,7 +960,7 @@ class TFMobileBertModel(TFMobileBertPreTrainedModel):
super
().
__init__
(
config
,
*
inputs
,
**
kwargs
)
self
.
mobilebert
=
TFMobileBertMainLayer
(
config
,
name
=
"mobilebert"
)
@
add_start_docstrings_to_
callable
(
MOBILEBERT_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
MOBILEBERT_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"google/mobilebert-uncased"
,
...
...
@@ -989,7 +989,7 @@ class TFMobileBertForPreTraining(TFMobileBertPreTrainedModel):
def
get_output_embeddings
(
self
):
return
self
.
mobilebert
.
embeddings
@
add_start_docstrings_to_
callable
(
MOBILEBERT_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
MOBILEBERT_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
replace_return_docstrings
(
output_type
=
TFMobileBertForPreTrainingOutput
,
config_class
=
_CONFIG_FOR_DOC
)
def
call
(
self
,
inputs
,
**
kwargs
):
r
"""
...
...
@@ -1040,7 +1040,7 @@ class TFMobileBertForMaskedLM(TFMobileBertPreTrainedModel, TFMaskedLanguageModel
def
get_output_embeddings
(
self
):
return
self
.
mobilebert
.
embeddings
@
add_start_docstrings_to_
callable
(
MOBILEBERT_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
MOBILEBERT_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"google/mobilebert-uncased"
,
...
...
@@ -1126,7 +1126,7 @@ class TFMobileBertForNextSentencePrediction(TFMobileBertPreTrainedModel):
self
.
mobilebert
=
TFMobileBertMainLayer
(
config
,
name
=
"mobilebert"
)
self
.
cls
=
TFMobileBertOnlyNSPHead
(
config
,
name
=
"seq_relationship___cls"
)
@
add_start_docstrings_to_
callable
(
MOBILEBERT_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
MOBILEBERT_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
replace_return_docstrings
(
output_type
=
TFNextSentencePredictorOutput
,
config_class
=
_CONFIG_FOR_DOC
)
def
call
(
self
,
inputs
,
**
kwargs
):
r
"""
...
...
@@ -1181,7 +1181,7 @@ class TFMobileBertForSequenceClassification(TFMobileBertPreTrainedModel, TFSeque
config
.
num_labels
,
kernel_initializer
=
get_initializer
(
config
.
initializer_range
),
name
=
"classifier"
)
@
add_start_docstrings_to_
callable
(
MOBILEBERT_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
MOBILEBERT_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"google/mobilebert-uncased"
,
...
...
@@ -1268,7 +1268,7 @@ class TFMobileBertForQuestionAnswering(TFMobileBertPreTrainedModel, TFQuestionAn
config
.
num_labels
,
kernel_initializer
=
get_initializer
(
config
.
initializer_range
),
name
=
"qa_outputs"
)
@
add_start_docstrings_to_
callable
(
MOBILEBERT_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
MOBILEBERT_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"google/mobilebert-uncased"
,
...
...
@@ -1376,7 +1376,9 @@ class TFMobileBertForMultipleChoice(TFMobileBertPreTrainedModel, TFMultipleChoic
"""
return
{
"input_ids"
:
tf
.
constant
(
MULTIPLE_CHOICE_DUMMY_INPUTS
)}
@
add_start_docstrings_to_callable
(
MOBILEBERT_INPUTS_DOCSTRING
.
format
(
"batch_size, num_choices, sequence_length"
))
@
add_start_docstrings_to_model_forward
(
MOBILEBERT_INPUTS_DOCSTRING
.
format
(
"batch_size, num_choices, sequence_length"
)
)
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"google/mobilebert-uncased"
,
...
...
@@ -1499,7 +1501,7 @@ class TFMobileBertForTokenClassification(TFMobileBertPreTrainedModel, TFTokenCla
config
.
num_labels
,
kernel_initializer
=
get_initializer
(
config
.
initializer_range
),
name
=
"classifier"
)
@
add_start_docstrings_to_
callable
(
MOBILEBERT_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
MOBILEBERT_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"google/mobilebert-uncased"
,
...
...
src/transformers/modeling_tf_openai.py
View file @
378142af
...
...
@@ -27,7 +27,7 @@ from .file_utils import (
ModelOutput
,
add_code_sample_docstrings
,
add_start_docstrings
,
add_start_docstrings_to_
callable
,
add_start_docstrings_to_
model_forward
,
replace_return_docstrings
,
)
from
.modeling_tf_outputs
import
TFBaseModelOutput
,
TFCausalLMOutput
...
...
@@ -495,7 +495,7 @@ class TFOpenAIGPTModel(TFOpenAIGPTPreTrainedModel):
super
().
__init__
(
config
,
*
inputs
,
**
kwargs
)
self
.
transformer
=
TFOpenAIGPTMainLayer
(
config
,
name
=
"transformer"
)
@
add_start_docstrings_to_
callable
(
OPENAI_GPT_INPUTS_DOCSTRING
)
@
add_start_docstrings_to_
model_forward
(
OPENAI_GPT_INPUTS_DOCSTRING
)
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"openai-gpt"
,
...
...
@@ -522,7 +522,7 @@ class TFOpenAIGPTLMHeadModel(TFOpenAIGPTPreTrainedModel, TFCausalLanguageModelin
def
get_output_embeddings
(
self
):
return
self
.
transformer
.
tokens_embed
@
add_start_docstrings_to_
callable
(
OPENAI_GPT_INPUTS_DOCSTRING
)
@
add_start_docstrings_to_
model_forward
(
OPENAI_GPT_INPUTS_DOCSTRING
)
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"openai-gpt"
,
...
...
@@ -612,7 +612,7 @@ class TFOpenAIGPTDoubleHeadsModel(TFOpenAIGPTPreTrainedModel):
def
get_output_embeddings
(
self
):
return
self
.
transformer
.
tokens_embed
@
add_start_docstrings_to_
callable
(
OPENAI_GPT_INPUTS_DOCSTRING
)
@
add_start_docstrings_to_
model_forward
(
OPENAI_GPT_INPUTS_DOCSTRING
)
@
replace_return_docstrings
(
output_type
=
TFOpenAIGPTDoubleHeadsModelOutput
,
config_class
=
_CONFIG_FOR_DOC
)
def
call
(
self
,
...
...
src/transformers/modeling_tf_roberta.py
View file @
378142af
...
...
@@ -24,7 +24,7 @@ from .file_utils import (
MULTIPLE_CHOICE_DUMMY_INPUTS
,
add_code_sample_docstrings
,
add_start_docstrings
,
add_start_docstrings_to_
callable
,
add_start_docstrings_to_
model_forward
,
)
from
.modeling_tf_outputs
import
(
TFBaseModelOutput
,
...
...
@@ -717,7 +717,7 @@ class TFRobertaModel(TFRobertaPreTrainedModel):
super
().
__init__
(
config
,
*
inputs
,
**
kwargs
)
self
.
roberta
=
TFRobertaMainLayer
(
config
,
name
=
"roberta"
)
@
add_start_docstrings_to_
callable
(
ROBERTA_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
ROBERTA_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"roberta-base"
,
...
...
@@ -776,7 +776,7 @@ class TFRobertaForMaskedLM(TFRobertaPreTrainedModel, TFMaskedLanguageModelingLos
def
get_output_embeddings
(
self
):
return
self
.
lm_head
.
decoder
@
add_start_docstrings_to_
callable
(
ROBERTA_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
ROBERTA_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"roberta-base"
,
...
...
@@ -886,7 +886,7 @@ class TFRobertaForSequenceClassification(TFRobertaPreTrainedModel, TFSequenceCla
self
.
roberta
=
TFRobertaMainLayer
(
config
,
name
=
"roberta"
)
self
.
classifier
=
TFRobertaClassificationHead
(
config
,
name
=
"classifier"
)
@
add_start_docstrings_to_
callable
(
ROBERTA_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
ROBERTA_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"roberta-base"
,
...
...
@@ -978,7 +978,7 @@ class TFRobertaForMultipleChoice(TFRobertaPreTrainedModel, TFMultipleChoiceLoss)
"""
return
{
"input_ids"
:
tf
.
constant
(
MULTIPLE_CHOICE_DUMMY_INPUTS
)}
@
add_start_docstrings_to_
callable
(
ROBERTA_INPUTS_DOCSTRING
.
format
(
"batch_size, num_choices, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
ROBERTA_INPUTS_DOCSTRING
.
format
(
"batch_size, num_choices, sequence_length"
))
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"roberta-base"
,
...
...
@@ -1096,7 +1096,7 @@ class TFRobertaForTokenClassification(TFRobertaPreTrainedModel, TFTokenClassific
config
.
num_labels
,
kernel_initializer
=
get_initializer
(
config
.
initializer_range
),
name
=
"classifier"
)
@
add_start_docstrings_to_
callable
(
ROBERTA_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
ROBERTA_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"roberta-base"
,
...
...
@@ -1182,7 +1182,7 @@ class TFRobertaForQuestionAnswering(TFRobertaPreTrainedModel, TFQuestionAnswerin
config
.
num_labels
,
kernel_initializer
=
get_initializer
(
config
.
initializer_range
),
name
=
"qa_outputs"
)
@
add_start_docstrings_to_
callable
(
ROBERTA_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
ROBERTA_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"roberta-base"
,
...
...
src/transformers/modeling_tf_t5.py
View file @
378142af
...
...
@@ -31,7 +31,7 @@ from .file_utils import (
DUMMY_INPUTS
,
DUMMY_MASK
,
add_start_docstrings
,
add_start_docstrings_to_
callable
,
add_start_docstrings_to_
model_forward
,
replace_return_docstrings
,
)
from
.modeling_tf_outputs
import
TFSeq2SeqLMOutput
,
TFSeq2SeqModelOutput
...
...
@@ -980,7 +980,7 @@ class TFT5Model(TFT5PreTrainedModel):
def
get_decoder
(
self
):
return
self
.
decoder
@
add_start_docstrings_to_
callable
(
T5_INPUTS_DOCSTRING
)
@
add_start_docstrings_to_
model_forward
(
T5_INPUTS_DOCSTRING
)
@
replace_return_docstrings
(
output_type
=
TFSeq2SeqModelOutput
,
config_class
=
_CONFIG_FOR_DOC
)
def
call
(
self
,
...
...
@@ -1177,7 +1177,7 @@ class TFT5ForConditionalGeneration(TFT5PreTrainedModel, TFCausalLanguageModeling
def
get_decoder
(
self
):
return
self
.
decoder
@
add_start_docstrings_to_
callable
(
T5_INPUTS_DOCSTRING
)
@
add_start_docstrings_to_
model_forward
(
T5_INPUTS_DOCSTRING
)
@
replace_return_docstrings
(
output_type
=
TFSeq2SeqLMOutput
,
config_class
=
_CONFIG_FOR_DOC
)
def
call
(
self
,
...
...
src/transformers/modeling_tf_transfo_xl.py
View file @
378142af
...
...
@@ -23,7 +23,12 @@ from typing import List, Optional, Tuple
import
tensorflow
as
tf
from
.configuration_transfo_xl
import
TransfoXLConfig
from
.file_utils
import
ModelOutput
,
add_code_sample_docstrings
,
add_start_docstrings
,
add_start_docstrings_to_callable
from
.file_utils
import
(
ModelOutput
,
add_code_sample_docstrings
,
add_start_docstrings
,
add_start_docstrings_to_model_forward
,
)
from
.modeling_tf_transfo_xl_utilities
import
TFAdaptiveSoftmaxMask
from
.modeling_tf_utils
import
TFPreTrainedModel
,
get_initializer
,
keras_serializable
,
shape_list
from
.tokenization_utils
import
BatchEncoding
...
...
@@ -803,7 +808,7 @@ class TFTransfoXLModel(TFTransfoXLPreTrainedModel):
super
().
__init__
(
config
,
*
inputs
,
**
kwargs
)
self
.
transformer
=
TFTransfoXLMainLayer
(
config
,
name
=
"transformer"
)
@
add_start_docstrings_to_
callable
(
TRANSFO_XL_INPUTS_DOCSTRING
)
@
add_start_docstrings_to_
model_forward
(
TRANSFO_XL_INPUTS_DOCSTRING
)
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"transfo-xl-wt103"
,
...
...
@@ -873,7 +878,7 @@ class TFTransfoXLLMHeadModel(TFTransfoXLPreTrainedModel):
def
init_mems
(
self
,
bsz
):
return
self
.
transformer
.
init_mems
(
bsz
)
@
add_start_docstrings_to_
callable
(
TRANSFO_XL_INPUTS_DOCSTRING
)
@
add_start_docstrings_to_
model_forward
(
TRANSFO_XL_INPUTS_DOCSTRING
)
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"transfo-xl-wt103"
,
...
...
src/transformers/modeling_tf_xlm.py
View file @
378142af
...
...
@@ -32,7 +32,7 @@ from .file_utils import (
ModelOutput
,
add_code_sample_docstrings
,
add_start_docstrings
,
add_start_docstrings_to_
callable
,
add_start_docstrings_to_
model_forward
,
)
from
.modeling_tf_outputs
import
(
TFBaseModelOutput
,
...
...
@@ -696,7 +696,7 @@ class TFXLMModel(TFXLMPreTrainedModel):
super
().
__init__
(
config
,
*
inputs
,
**
kwargs
)
self
.
transformer
=
TFXLMMainLayer
(
config
,
name
=
"transformer"
)
@
add_start_docstrings_to_
callable
(
XLM_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
XLM_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"xlm-mlm-en-2048"
,
...
...
@@ -775,7 +775,7 @@ class TFXLMWithLMHeadModel(TFXLMPreTrainedModel):
langs
=
None
return
{
"inputs"
:
inputs
,
"langs"
:
langs
}
@
add_start_docstrings_to_
callable
(
XLM_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
XLM_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"xlm-mlm-en-2048"
,
...
...
@@ -813,7 +813,7 @@ class TFXLMForSequenceClassification(TFXLMPreTrainedModel, TFSequenceClassificat
self
.
transformer
=
TFXLMMainLayer
(
config
,
name
=
"transformer"
)
self
.
sequence_summary
=
TFSequenceSummary
(
config
,
initializer_range
=
config
.
init_std
,
name
=
"sequence_summary"
)
@
add_start_docstrings_to_
callable
(
XLM_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
XLM_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"xlm-mlm-en-2048"
,
...
...
@@ -914,7 +914,7 @@ class TFXLMForMultipleChoice(TFXLMPreTrainedModel, TFMultipleChoiceLoss):
"langs"
:
tf
.
constant
(
MULTIPLE_CHOICE_DUMMY_INPUTS
),
}
@
add_start_docstrings_to_
callable
(
XLM_INPUTS_DOCSTRING
.
format
(
"batch_size, num_choices, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
XLM_INPUTS_DOCSTRING
.
format
(
"batch_size, num_choices, sequence_length"
))
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"xlm-mlm-en-2048"
,
...
...
@@ -1056,7 +1056,7 @@ class TFXLMForTokenClassification(TFXLMPreTrainedModel, TFTokenClassificationLos
config
.
num_labels
,
kernel_initializer
=
get_initializer
(
config
.
init_std
),
name
=
"classifier"
)
@
add_start_docstrings_to_
callable
(
XLM_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
XLM_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"xlm-mlm-en-2048"
,
...
...
@@ -1143,7 +1143,7 @@ class TFXLMForQuestionAnsweringSimple(TFXLMPreTrainedModel, TFQuestionAnsweringL
config
.
num_labels
,
kernel_initializer
=
get_initializer
(
config
.
init_std
),
name
=
"qa_outputs"
)
@
add_start_docstrings_to_
callable
(
XLM_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
XLM_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"xlm-mlm-en-2048"
,
...
...
src/transformers/modeling_tf_xlnet.py
View file @
378142af
...
...
@@ -30,7 +30,7 @@ from .file_utils import (
ModelOutput
,
add_code_sample_docstrings
,
add_start_docstrings
,
add_start_docstrings_to_
callable
,
add_start_docstrings_to_
model_forward
,
replace_return_docstrings
,
)
from
.modeling_tf_utils
import
(
...
...
@@ -1130,7 +1130,7 @@ class TFXLNetModel(TFXLNetPreTrainedModel):
super
().
__init__
(
config
,
*
inputs
,
**
kwargs
)
self
.
transformer
=
TFXLNetMainLayer
(
config
,
name
=
"transformer"
)
@
add_start_docstrings_to_
callable
(
XLNET_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
XLNET_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"xlnet-base-cased"
,
...
...
@@ -1197,7 +1197,7 @@ class TFXLNetLMHeadModel(TFXLNetPreTrainedModel, TFCausalLanguageModelingLoss):
return
inputs
@
add_start_docstrings_to_
callable
(
XLNET_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
XLNET_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
replace_return_docstrings
(
output_type
=
TFXLNetLMHeadModelOutput
,
config_class
=
_CONFIG_FOR_DOC
)
def
call
(
self
,
...
...
@@ -1314,7 +1314,7 @@ class TFXLNetForSequenceClassification(TFXLNetPreTrainedModel, TFSequenceClassif
config
.
num_labels
,
kernel_initializer
=
get_initializer
(
config
.
initializer_range
),
name
=
"logits_proj"
)
@
add_start_docstrings_to_
callable
(
XLNET_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
XLNET_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"xlnet-base-cased"
,
...
...
@@ -1417,7 +1417,7 @@ class TFXLNetForMultipleChoice(TFXLNetPreTrainedModel, TFMultipleChoiceLoss):
"""
return
{
"input_ids"
:
tf
.
constant
(
MULTIPLE_CHOICE_DUMMY_INPUTS
)}
@
add_start_docstrings_to_
callable
(
XLNET_INPUTS_DOCSTRING
.
format
(
"batch_size, num_choices, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
XLNET_INPUTS_DOCSTRING
.
format
(
"batch_size, num_choices, sequence_length"
))
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"xlnet-base-cased"
,
...
...
@@ -1552,7 +1552,7 @@ class TFXLNetForTokenClassification(TFXLNetPreTrainedModel, TFTokenClassificatio
config
.
num_labels
,
kernel_initializer
=
get_initializer
(
config
.
initializer_range
),
name
=
"classifier"
)
@
add_start_docstrings_to_
callable
(
XLNET_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
XLNET_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"xlnet-base-cased"
,
...
...
@@ -1639,7 +1639,7 @@ class TFXLNetForQuestionAnsweringSimple(TFXLNetPreTrainedModel, TFQuestionAnswer
config
.
num_labels
,
kernel_initializer
=
get_initializer
(
config
.
initializer_range
),
name
=
"qa_outputs"
)
@
add_start_docstrings_to_
callable
(
XLNET_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
XLNET_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"xlnet-base-cased"
,
...
...
src/transformers/modeling_transfo_xl.py
View file @
378142af
...
...
@@ -26,7 +26,12 @@ import torch.nn as nn
import
torch.nn.functional
as
F
from
.configuration_transfo_xl
import
TransfoXLConfig
from
.file_utils
import
ModelOutput
,
add_code_sample_docstrings
,
add_start_docstrings
,
add_start_docstrings_to_callable
from
.file_utils
import
(
ModelOutput
,
add_code_sample_docstrings
,
add_start_docstrings
,
add_start_docstrings_to_model_forward
,
)
from
.modeling_transfo_xl_utilities
import
ProjectedAdaptiveLogSoftmax
from
.modeling_utils
import
PreTrainedModel
from
.utils
import
logging
...
...
@@ -830,7 +835,7 @@ class TransfoXLModel(TransfoXLPreTrainedModel):
return
new_mems
@
add_start_docstrings_to_
callable
(
TRANSFO_XL_INPUTS_DOCSTRING
)
@
add_start_docstrings_to_
model_forward
(
TRANSFO_XL_INPUTS_DOCSTRING
)
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"transfo-xl-wt103"
,
...
...
@@ -1018,7 +1023,7 @@ class TransfoXLLMHeadModel(TransfoXLPreTrainedModel):
def
init_mems
(
self
,
bsz
):
return
self
.
transformer
.
init_mems
(
bsz
)
@
add_start_docstrings_to_
callable
(
TRANSFO_XL_INPUTS_DOCSTRING
)
@
add_start_docstrings_to_
model_forward
(
TRANSFO_XL_INPUTS_DOCSTRING
)
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"transfo-xl-wt103"
,
...
...
src/transformers/modeling_xlm.py
View file @
378142af
...
...
@@ -35,7 +35,7 @@ from .file_utils import (
ModelOutput
,
add_code_sample_docstrings
,
add_start_docstrings
,
add_start_docstrings_to_
callable
,
add_start_docstrings_to_
model_forward
,
replace_return_docstrings
,
)
from
.modeling_outputs
import
(
...
...
@@ -486,7 +486,7 @@ class XLMModel(XLMPreTrainedModel):
for
layer
,
heads
in
heads_to_prune
.
items
():
self
.
attentions
[
layer
].
prune_heads
(
heads
)
@
add_start_docstrings_to_
callable
(
XLM_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
XLM_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"xlm-mlm-en-2048"
,
...
...
@@ -703,7 +703,7 @@ class XLMWithLMHeadModel(XLMPreTrainedModel):
langs
=
None
return
{
"input_ids"
:
input_ids
,
"langs"
:
langs
}
@
add_start_docstrings_to_
callable
(
XLM_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
XLM_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"xlm-mlm-en-2048"
,
...
...
@@ -781,7 +781,7 @@ class XLMForSequenceClassification(XLMPreTrainedModel):
self
.
init_weights
()
@
add_start_docstrings_to_
callable
(
XLM_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
XLM_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"xlm-mlm-en-2048"
,
...
...
@@ -868,7 +868,7 @@ class XLMForQuestionAnsweringSimple(XLMPreTrainedModel):
self
.
init_weights
()
@
add_start_docstrings_to_
callable
(
XLM_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
XLM_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"xlm-mlm-en-2048"
,
...
...
@@ -972,7 +972,7 @@ class XLMForQuestionAnswering(XLMPreTrainedModel):
self
.
init_weights
()
@
add_start_docstrings_to_
callable
(
XLM_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
XLM_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
replace_return_docstrings
(
output_type
=
XLMForQuestionAnsweringOutput
,
config_class
=
_CONFIG_FOR_DOC
)
def
forward
(
self
,
...
...
@@ -1091,7 +1091,7 @@ class XLMForTokenClassification(XLMPreTrainedModel):
self
.
init_weights
()
@
add_start_docstrings_to_
callable
(
XLM_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
XLM_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"xlm-mlm-en-2048"
,
...
...
@@ -1184,7 +1184,7 @@ class XLMForMultipleChoice(XLMPreTrainedModel):
self
.
init_weights
()
@
add_start_docstrings_to_
callable
(
XLM_INPUTS_DOCSTRING
.
format
(
"batch_size, num_choicec, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
XLM_INPUTS_DOCSTRING
.
format
(
"batch_size, num_choicec, sequence_length"
))
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"xlm-mlm-en-2048"
,
...
...
src/transformers/modeling_xlnet.py
View file @
378142af
...
...
@@ -32,7 +32,7 @@ from .file_utils import (
ModelOutput
,
add_code_sample_docstrings
,
add_start_docstrings
,
add_start_docstrings_to_
callable
,
add_start_docstrings_to_
model_forward
,
replace_return_docstrings
,
)
from
.modeling_utils
import
(
...
...
@@ -1064,7 +1064,7 @@ class XLNetModel(XLNetPreTrainedModel):
pos_emb
=
pos_emb
.
to
(
self
.
device
)
return
pos_emb
@
add_start_docstrings_to_
callable
(
XLNET_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
XLNET_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"xlnet-base-cased"
,
...
...
@@ -1342,7 +1342,7 @@ class XLNetLMHeadModel(XLNetPreTrainedModel):
return
inputs
@
add_start_docstrings_to_
callable
(
XLNET_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
XLNET_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
replace_return_docstrings
(
output_type
=
XLNetLMHeadModelOutput
,
config_class
=
_CONFIG_FOR_DOC
)
def
forward
(
self
,
...
...
@@ -1465,7 +1465,7 @@ class XLNetForSequenceClassification(XLNetPreTrainedModel):
self
.
init_weights
()
@
add_start_docstrings_to_
callable
(
XLNET_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
XLNET_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"xlnet-base-cased"
,
...
...
@@ -1558,7 +1558,7 @@ class XLNetForTokenClassification(XLNetPreTrainedModel):
self
.
init_weights
()
@
add_start_docstrings_to_
callable
(
XLNET_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
XLNET_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"xlnet-base-cased"
,
...
...
@@ -1655,7 +1655,7 @@ class XLNetForMultipleChoice(XLNetPreTrainedModel):
self
.
init_weights
()
@
add_start_docstrings_to_
callable
(
XLNET_INPUTS_DOCSTRING
.
format
(
"batch_size, num_choices, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
XLNET_INPUTS_DOCSTRING
.
format
(
"batch_size, num_choices, sequence_length"
))
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"xlnet-base-cased"
,
...
...
@@ -1756,7 +1756,7 @@ class XLNetForQuestionAnsweringSimple(XLNetPreTrainedModel):
self
.
init_weights
()
@
add_start_docstrings_to_
callable
(
XLNET_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
XLNET_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"xlnet-base-cased"
,
...
...
@@ -1868,7 +1868,7 @@ class XLNetForQuestionAnswering(XLNetPreTrainedModel):
self
.
init_weights
()
@
add_start_docstrings_to_
callable
(
XLNET_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
XLNET_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
replace_return_docstrings
(
output_type
=
XLNetForQuestionAnsweringOutput
,
config_class
=
_CONFIG_FOR_DOC
)
def
forward
(
self
,
...
...
templates/adding_a_new_model/modeling_tf_xxx.py
View file @
378142af
...
...
@@ -26,7 +26,7 @@ from .file_utils import (
MULTIPLE_CHOICE_DUMMY_INPUTS
,
add_code_sample_docstrings
,
add_start_docstrings
,
add_start_docstrings_to_
callable
,
add_start_docstrings_to_
model_forward
,
)
from
.modeling_tf_outputs
import
(
TFBaseModelOutputWithPooling
,
...
...
@@ -360,7 +360,7 @@ class TFXxxModel(TFXxxPreTrainedModel):
super
().
__init__
(
config
,
*
inputs
,
**
kwargs
)
self
.
transformer
=
TFXxxMainLayer
(
config
,
name
=
"transformer"
)
@
add_start_docstrings_to_
callable
(
XXX_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
XXX_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"xxx-base-cased"
,
...
...
@@ -383,7 +383,7 @@ class TFXxxForMaskedLM(TFXxxPreTrainedModel, TFMaskedLanguageModelingLoss):
self
.
transformer
=
TFXxxMainLayer
(
config
,
name
=
"transformer"
)
self
.
mlm
=
TFXxxMLMHead
(
config
,
self
.
transformer
.
embeddings
,
name
=
"mlm"
)
@
add_start_docstrings_to_
callable
(
XXX_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
XXX_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"xxx-base-cased"
,
...
...
@@ -465,7 +465,7 @@ class TFXxxForSequenceClassification(TFXxxPreTrainedModel, TFSequenceClassificat
config
.
num_labels
,
kernel_initializer
=
get_initializer
(
config
.
initializer_range
),
name
=
"classifier"
)
@
add_start_docstrings_to_
callable
(
XXX_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
XXX_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"xxx-base-cased"
,
...
...
@@ -557,7 +557,7 @@ class TFXxxForMultipleChoice(TFXxxPreTrainedModel, TFMultipleChoiceLoss):
"""
return
{
"input_ids"
:
tf
.
constant
(
MULTIPLE_CHOICE_DUMMY_INPUTS
)}
@
add_start_docstrings_to_
callable
(
XXX_INPUTS_DOCSTRING
.
format
(
"batch_size, num_choices, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
XXX_INPUTS_DOCSTRING
.
format
(
"batch_size, num_choices, sequence_length"
))
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"xxx-base-cased"
,
...
...
@@ -680,7 +680,7 @@ class TFXxxForTokenClassification(TFXxxPreTrainedModel, TFTokenClassificationLos
config
.
num_labels
,
kernel_initializer
=
get_initializer
(
config
.
initializer_range
),
name
=
"classifier"
)
@
add_start_docstrings_to_
callable
(
XXX_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
XXX_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"xxx-base-cased"
,
...
...
@@ -761,7 +761,7 @@ class TFXxxForQuestionAnswering(TFXxxPreTrainedModel, TFQuestionAnsweringLoss):
config
.
num_labels
,
kernel_initializer
=
get_initializer
(
config
.
initializer_range
),
name
=
"qa_outputs"
)
@
add_start_docstrings_to_
callable
(
XXX_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
XXX_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"xxx-base-cased"
,
...
...
templates/adding_a_new_model/modeling_xxx.py
View file @
378142af
...
...
@@ -26,7 +26,7 @@ from torch import nn
from
torch.nn
import
CrossEntropyLoss
,
MSELoss
from
.configuration_xxx
import
XxxConfig
from
.file_utils
import
add_code_sample_docstrings
,
add_start_docstrings
,
add_start_docstrings_to_
callable
from
.file_utils
import
add_code_sample_docstrings
,
add_start_docstrings
,
add_start_docstrings_to_
model_forward
from
.modeling_outputs
import
(
BaseModelOutputWithPooling
,
MaskedLMOutput
,
...
...
@@ -309,7 +309,7 @@ class XxxModel(XxxPreTrainedModel):
for
layer
,
heads
in
heads_to_prune
.
items
():
self
.
encoder
.
layer
[
layer
].
attention
.
prune_heads
(
heads
)
@
add_start_docstrings_to_
callable
(
XXX_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
XXX_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"xxx-base-uncased"
,
...
...
@@ -391,7 +391,7 @@ class XxxForMaskedLM(XxxPreTrainedModel):
def
get_output_embeddings
(
self
):
return
self
.
lm_head
@
add_start_docstrings_to_
callable
(
XXX_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
XXX_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"xxx-base-uncased"
,
...
...
@@ -468,7 +468,7 @@ class XxxForSequenceClassification(XxxPreTrainedModel):
self
.
init_weights
()
@
add_start_docstrings_to_
callable
(
XXX_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
XXX_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"xxx-base-uncased"
,
...
...
@@ -551,7 +551,7 @@ class XxxForMultipleChoice(XxxPreTrainedModel):
self
.
init_weights
()
@
add_start_docstrings_to_
callable
(
XXX_INPUTS_DOCSTRING
.
format
(
"batch_size, num_choices, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
XXX_INPUTS_DOCSTRING
.
format
(
"batch_size, num_choices, sequence_length"
))
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"xxx-base-uncased"
,
...
...
@@ -641,7 +641,7 @@ class XxxForTokenClassification(XxxPreTrainedModel):
self
.
init_weights
()
@
add_start_docstrings_to_
callable
(
XXX_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
XXX_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"xxx-base-uncased"
,
...
...
@@ -726,7 +726,7 @@ class XxxForQuestionAnswering(XxxPreTrainedModel):
self
.
init_weights
()
@
add_start_docstrings_to_
callable
(
XXX_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_start_docstrings_to_
model_forward
(
XXX_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
add_code_sample_docstrings
(
tokenizer_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
"xxx-base-uncased"
,
...
...
Prev
1
2
3
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment