Unverified Commit 378142af authored by Sylvain Gugger's avatar Sylvain Gugger Committed by GitHub
Browse files

Rename add_start_docstrings_to_callable (#8120)

parent 6241c873
......@@ -23,7 +23,7 @@ from torch.nn import CrossEntropyLoss
from .activations import ACT2FN
from .configuration_layoutlm import LayoutLMConfig
from .file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_callable
from .file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from .modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, MaskedLMOutput, TokenClassifierOutput
from .modeling_utils import (
PreTrainedModel,
......@@ -607,7 +607,7 @@ class LayoutLMModel(LayoutLMPreTrainedModel):
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_callable(LAYOUTLM_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
@add_start_docstrings_to_model_forward(LAYOUTLM_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="layoutlm-base-uncased",
......@@ -744,7 +744,7 @@ class LayoutLMForMaskedLM(LayoutLMPreTrainedModel):
def get_output_embeddings(self):
return self.cls.predictions.decoder
@add_start_docstrings_to_callable(LAYOUTLM_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
@add_start_docstrings_to_model_forward(LAYOUTLM_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="layoutlm-base-uncased",
......@@ -832,7 +832,7 @@ class LayoutLMForTokenClassification(LayoutLMPreTrainedModel):
def get_input_embeddings(self):
return self.layoutlm.embeddings.word_embeddings
@add_start_docstrings_to_callable(LAYOUTLM_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
@add_start_docstrings_to_model_forward(LAYOUTLM_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="layoutlm-base-uncased",
......
......@@ -27,7 +27,7 @@ from .configuration_longformer import LongformerConfig
from .file_utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_callable,
add_start_docstrings_to_model_forward,
replace_return_docstrings,
)
from .modeling_outputs import (
......@@ -1181,7 +1181,7 @@ class LongformerModel(LongformerPreTrainedModel):
attention_mask = global_attention_mask + 1
return attention_mask
@add_start_docstrings_to_callable(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC)
def forward(
self,
......@@ -1308,7 +1308,7 @@ class LongformerForMaskedLM(LongformerPreTrainedModel):
def get_output_embeddings(self):
return self.lm_head.decoder
@add_start_docstrings_to_callable(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
......@@ -1412,7 +1412,7 @@ class LongformerForSequenceClassification(LongformerPreTrainedModel):
self.init_weights()
@add_start_docstrings_to_callable(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="allenai/longformer-base-4096",
......@@ -1521,7 +1521,7 @@ class LongformerForQuestionAnswering(LongformerPreTrainedModel):
self.init_weights()
@add_start_docstrings_to_callable(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
......@@ -1655,7 +1655,7 @@ class LongformerForTokenClassification(LongformerPreTrainedModel):
self.init_weights()
@add_start_docstrings_to_callable(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="allenai/longformer-base-4096",
......@@ -1742,7 +1742,9 @@ class LongformerForMultipleChoice(LongformerPreTrainedModel):
self.init_weights()
@add_start_docstrings_to_callable(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_start_docstrings_to_model_forward(
LONGFORMER_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
)
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="allenai/longformer-base-4096",
......
......@@ -30,7 +30,7 @@ from .file_utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_callable,
add_start_docstrings_to_model_forward,
replace_return_docstrings,
)
from .modeling_utils import PreTrainedModel
......@@ -893,7 +893,7 @@ class LxmertModel(LxmertPreTrainedModel):
def set_input_embeddings(self, new_embeddings):
self.embeddings.word_embeddings = new_embeddings
@add_start_docstrings_to_callable(LXMERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_start_docstrings_to_model_forward(LXMERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="unc-nlp/lxmert-base-uncased",
......@@ -1145,7 +1145,7 @@ class LxmertForPreTraining(LxmertPreTrainedModel):
return new_qa_logit_layer
@add_start_docstrings_to_callable(LXMERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_start_docstrings_to_model_forward(LXMERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=LxmertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
......@@ -1368,7 +1368,7 @@ class LxmertForQuestionAnswering(LxmertPreTrainedModel):
return new_qa_logit_layer
@add_start_docstrings_to_callable(LXMERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_start_docstrings_to_model_forward(LXMERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="unc-nlp/lxmert-base-uncased",
......
......@@ -20,7 +20,7 @@ import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss, MSELoss
from .file_utils import add_start_docstrings, add_start_docstrings_to_callable, replace_return_docstrings
from .file_utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings
from .modeling_outputs import BaseModelOutputWithPooling, SequenceClassifierOutput
from .modeling_utils import ModuleUtilsMixin
from .utils import logging
......@@ -187,7 +187,7 @@ class MMBTModel(nn.Module, ModuleUtilsMixin):
self.transformer = transformer
self.modal_encoder = ModalEmbeddings(config, encoder, transformer.embeddings)
@add_start_docstrings_to_callable(MMBT_INPUTS_DOCSTRING)
@add_start_docstrings_to_model_forward(MMBT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC)
def forward(
self,
......
......@@ -37,7 +37,7 @@ from .file_utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_callable,
add_start_docstrings_to_model_forward,
replace_return_docstrings,
)
from .modeling_outputs import (
......@@ -837,7 +837,7 @@ class MobileBertModel(MobileBertPreTrainedModel):
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_callable(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="google/mobilebert-uncased",
......@@ -970,7 +970,7 @@ class MobileBertForPreTraining(MobileBertPreTrainedModel):
if output_embeddings is not None and self.config.tie_word_embeddings:
self._tie_or_clone_weights(output_embeddings, self.get_input_embeddings())
@add_start_docstrings_to_callable(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=MobileBertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
......@@ -1088,7 +1088,7 @@ class MobileBertForMaskedLM(MobileBertPreTrainedModel):
if output_embeddings is not None and self.config.tie_word_embeddings:
self._tie_or_clone_weights(output_embeddings, self.get_input_embeddings())
@add_start_docstrings_to_callable(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="google/mobilebert-uncased",
......@@ -1184,7 +1184,7 @@ class MobileBertForNextSentencePrediction(MobileBertPreTrainedModel):
self.init_weights()
@add_start_docstrings_to_callable(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
......@@ -1276,7 +1276,7 @@ class MobileBertForSequenceClassification(MobileBertPreTrainedModel):
self.init_weights()
@add_start_docstrings_to_callable(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="google/mobilebert-uncased",
......@@ -1361,7 +1361,7 @@ class MobileBertForQuestionAnswering(MobileBertPreTrainedModel):
self.init_weights()
@add_start_docstrings_to_callable(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="google/mobilebert-uncased",
......@@ -1460,7 +1460,9 @@ class MobileBertForMultipleChoice(MobileBertPreTrainedModel):
self.init_weights()
@add_start_docstrings_to_callable(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_start_docstrings_to_model_forward(
MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
)
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="google/mobilebert-uncased",
......@@ -1555,7 +1557,7 @@ class MobileBertForTokenClassification(MobileBertPreTrainedModel):
self.init_weights()
@add_start_docstrings_to_callable(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="google/mobilebert-uncased",
......
......@@ -33,7 +33,7 @@ from .file_utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_callable,
add_start_docstrings_to_model_forward,
replace_return_docstrings,
)
from .modeling_outputs import BaseModelOutput, CausalLMOutput, SequenceClassifierOutput
......@@ -427,7 +427,7 @@ class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
for layer, heads in heads_to_prune.items():
self.h[layer].attn.prune_heads(heads)
@add_start_docstrings_to_callable(OPENAI_GPT_INPUTS_DOCSTRING)
@add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="openai-gpt",
......@@ -543,7 +543,7 @@ class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel):
def get_output_embeddings(self):
return self.lm_head
@add_start_docstrings_to_callable(OPENAI_GPT_INPUTS_DOCSTRING)
@add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="openai-gpt",
......@@ -629,7 +629,7 @@ class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
def get_output_embeddings(self):
return self.lm_head
@add_start_docstrings_to_callable(OPENAI_GPT_INPUTS_DOCSTRING)
@add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=OpenAIGPTDoubleHeadsModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
......@@ -754,7 +754,7 @@ class OpenAIGPTForSequenceClassification(OpenAIGPTPreTrainedModel):
self.init_weights()
@add_start_docstrings_to_callable(OPENAI_GPT_INPUTS_DOCSTRING)
@add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="openai-gpt",
......
......@@ -25,7 +25,12 @@ from torch import Tensor, nn
from .activations import ACT2FN
from .configuration_prophetnet import ProphetNetConfig
from .file_utils import ModelOutput, add_start_docstrings, add_start_docstrings_to_callable, replace_return_docstrings
from .file_utils import (
ModelOutput,
add_start_docstrings,
add_start_docstrings_to_model_forward,
replace_return_docstrings,
)
from .modeling_outputs import BaseModelOutput
from .modeling_utils import PreTrainedModel
from .utils import logging
......@@ -1138,7 +1143,7 @@ class ProphetNetEncoder(ProphetNetPreTrainedModel):
def set_input_embeddings(self, value):
self.word_embeddings = value
@add_start_docstrings_to_callable(PROPHETNET_STANDALONE_INPUTS_DOCSTRING)
@add_start_docstrings_to_model_forward(PROPHETNET_STANDALONE_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
......@@ -1254,7 +1259,7 @@ class ProphetNetDecoder(ProphetNetPreTrainedModel):
def set_input_embeddings(self, value):
self.word_embeddings = value
@add_start_docstrings_to_callable(PROPHETNET_STANDALONE_INPUTS_DOCSTRING)
@add_start_docstrings_to_model_forward(PROPHETNET_STANDALONE_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=ProphetNetDecoderModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
......@@ -1570,7 +1575,7 @@ class ProphetNetModel(ProphetNetPreTrainedModel):
def get_decoder(self):
return self.decoder
@add_start_docstrings_to_callable(PROPHETNET_INPUTS_DOCSTRING)
@add_start_docstrings_to_model_forward(PROPHETNET_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=ProphetNetSeq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
......@@ -1674,7 +1679,7 @@ class ProphetNetForConditionalGeneration(ProphetNetPreTrainedModel):
def get_input_embeddings(self):
return self.prophetnet.word_embeddings
@add_start_docstrings_to_callable(PROPHETNET_INPUTS_DOCSTRING)
@add_start_docstrings_to_model_forward(PROPHETNET_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=ProphetNetSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
......@@ -1865,7 +1870,7 @@ class ProphetNetForCausalLM(ProphetNetPreTrainedModel):
def get_output_embeddings(self):
return self.lm_head
@add_start_docstrings_to_callable(PROPHETNET_STANDALONE_INPUTS_DOCSTRING)
@add_start_docstrings_to_model_forward(PROPHETNET_STANDALONE_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=ProphetNetDecoderLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
......
......@@ -21,7 +21,7 @@ import torch
from .configuration_rag import RagConfig
from .configuration_utils import PretrainedConfig
from .file_utils import add_start_docstrings_to_callable, replace_return_docstrings
from .file_utils import add_start_docstrings_to_model_forward, replace_return_docstrings
from .modeling_outputs import ModelOutput
from .modeling_utils import PreTrainedModel
from .retrieval_rag import RagRetriever
......@@ -459,7 +459,7 @@ RAG_FORWARD_INPUTS_DOCSTRING = r"""
"""
@add_start_docstrings_to_callable(RAG_START_DOCSTRING)
@add_start_docstrings_to_model_forward(RAG_START_DOCSTRING)
class RagModel(RagPreTrainedModel):
def __init__(
self,
......@@ -502,7 +502,7 @@ class RagModel(RagPreTrainedModel):
self.question_encoder = question_encoder
self.generator = generator
@add_start_docstrings_to_callable(RAG_FORWARD_INPUTS_DOCSTRING)
@add_start_docstrings_to_model_forward(RAG_FORWARD_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=RetrievAugLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
......@@ -658,7 +658,7 @@ class RagModel(RagPreTrainedModel):
)
@add_start_docstrings_to_callable(
@add_start_docstrings_to_model_forward(
"""
A RAG-sequence model impementation. It performs RAG-sequence specific marginalization in the forward pass.
""",
......@@ -687,7 +687,7 @@ class RagSequenceForGeneration(RagPreTrainedModel):
def set_retriever(self, retriever: RagRetriever):
self.rag.retriever = retriever
@add_start_docstrings_to_callable(RAG_FORWARD_INPUTS_DOCSTRING)
@add_start_docstrings_to_model_forward(RAG_FORWARD_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=RetrievAugLMMarginOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
......@@ -984,7 +984,7 @@ class RagSequenceForGeneration(RagPreTrainedModel):
return output
@add_start_docstrings_to_callable(
@add_start_docstrings_to_model_forward(
"""
A RAG-token model impementation. It performs RAG-token specific marginalization in the forward pass.
""",
......@@ -1080,7 +1080,7 @@ class RagTokenForGeneration(RagPreTrainedModel):
log_prob_sum = seq_logprobs + doc_logprobs.unsqueeze(-1).unsqueeze(-1)
return torch.logsumexp(log_prob_sum, dim=1)
@add_start_docstrings_to_callable(RAG_FORWARD_INPUTS_DOCSTRING)
@add_start_docstrings_to_model_forward(RAG_FORWARD_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=RetrievAugLMMarginOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
......
......@@ -36,7 +36,7 @@ from .file_utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_callable,
add_start_docstrings_to_model_forward,
)
from .modeling_outputs import CausalLMOutput, MaskedLMOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput
from .modeling_utils import PreTrainedModel, apply_chunking_to_forward
......@@ -1991,7 +1991,7 @@ class ReformerModel(ReformerPreTrainedModel):
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_callable(REFORMER_INPUTS_DOCSTRING)
@add_start_docstrings_to_model_forward(REFORMER_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="google/reformer-crime-and-punishment",
......@@ -2195,7 +2195,7 @@ class ReformerModelWithLMHead(ReformerPreTrainedModel):
def get_output_embeddings(self):
return self.lm_head.decoder
@add_start_docstrings_to_callable(REFORMER_INPUTS_DOCSTRING)
@add_start_docstrings_to_model_forward(REFORMER_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="google/reformer-crime-and-punishment",
......@@ -2309,7 +2309,7 @@ class ReformerForMaskedLM(ReformerPreTrainedModel):
def get_output_embeddings(self):
return self.lm_head.decoder
@add_start_docstrings_to_callable(REFORMER_INPUTS_DOCSTRING)
@add_start_docstrings_to_model_forward(REFORMER_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="google/reformer-crime-and-punishment",
......@@ -2389,7 +2389,7 @@ class ReformerForSequenceClassification(ReformerPreTrainedModel):
self.init_weights()
@add_start_docstrings_to_callable(REFORMER_INPUTS_DOCSTRING)
@add_start_docstrings_to_model_forward(REFORMER_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="google/reformer-crime-and-punishment",
......@@ -2491,7 +2491,7 @@ class ReformerForQuestionAnswering(ReformerPreTrainedModel):
self.init_weights()
@add_start_docstrings_to_callable(REFORMER_INPUTS_DOCSTRING)
@add_start_docstrings_to_model_forward(REFORMER_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="google/reformer-crime-and-punishment",
......
......@@ -27,7 +27,7 @@ from .configuration_roberta import RobertaConfig
from .file_utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_callable,
add_start_docstrings_to_model_forward,
replace_return_docstrings,
)
from .modeling_outputs import (
......@@ -595,7 +595,7 @@ class RobertaModel(RobertaPreTrainedModel):
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_callable(ROBERTA_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="roberta-base",
......@@ -718,7 +718,7 @@ class RobertaForCausalLM(RobertaPreTrainedModel):
def get_output_embeddings(self):
return self.lm_head.decoder
@add_start_docstrings_to_callable(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=CausalLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
......@@ -838,7 +838,7 @@ class RobertaForMaskedLM(RobertaPreTrainedModel):
def get_output_embeddings(self):
return self.lm_head.decoder
@add_start_docstrings_to_callable(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="roberta-base",
......@@ -956,7 +956,7 @@ class RobertaForSequenceClassification(RobertaPreTrainedModel):
self.init_weights()
@add_start_docstrings_to_callable(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="roberta-base",
......@@ -1039,7 +1039,7 @@ class RobertaForMultipleChoice(RobertaPreTrainedModel):
self.init_weights()
@add_start_docstrings_to_callable(ROBERTA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="roberta-base",
......@@ -1133,7 +1133,7 @@ class RobertaForTokenClassification(RobertaPreTrainedModel):
self.init_weights()
@add_start_docstrings_to_callable(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="roberta-base",
......@@ -1242,7 +1242,7 @@ class RobertaForQuestionAnswering(RobertaPreTrainedModel):
self.init_weights()
@add_start_docstrings_to_callable(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="roberta-base",
......
......@@ -23,7 +23,7 @@ from torch.nn import CrossEntropyLoss, MSELoss
from .activations import ACT2FN
from .configuration_squeezebert import SqueezeBertConfig
from .file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_callable
from .file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from .modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPooling,
......@@ -518,7 +518,7 @@ class SqueezeBertModel(SqueezeBertPreTrainedModel):
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_callable(SQUEEZEBERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
@add_start_docstrings_to_model_forward(SQUEEZEBERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="squeezebert/squeezebert-mnli-headless",
......@@ -605,7 +605,7 @@ class SqueezeBertForMaskedLM(SqueezeBertPreTrainedModel):
def get_output_embeddings(self):
return self.lm_head
@add_start_docstrings_to_callable(SQUEEZEBERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
@add_start_docstrings_to_model_forward(SQUEEZEBERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="squeezebert/squeezebert-uncased",
......@@ -683,7 +683,7 @@ class SqueezeBertForSequenceClassification(SqueezeBertPreTrainedModel):
self.init_weights()
@add_start_docstrings_to_callable(SQUEEZEBERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
@add_start_docstrings_to_model_forward(SQUEEZEBERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="squeezebert/squeezebert-mnli-headless",
......@@ -767,7 +767,7 @@ class SqueezeBertForMultipleChoice(SqueezeBertPreTrainedModel):
self.init_weights()
@add_start_docstrings_to_callable(
@add_start_docstrings_to_model_forward(
SQUEEZEBERT_INPUTS_DOCSTRING.format("(batch_size, num_choices, sequence_length)")
)
@add_code_sample_docstrings(
......@@ -861,7 +861,7 @@ class SqueezeBertForTokenClassification(SqueezeBertPreTrainedModel):
self.init_weights()
@add_start_docstrings_to_callable(SQUEEZEBERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
@add_start_docstrings_to_model_forward(SQUEEZEBERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="squeezebert/squeezebert-mnli-headless",
......@@ -948,7 +948,7 @@ class SqueezeBertForQuestionAnswering(SqueezeBertPreTrainedModel):
self.init_weights()
@add_start_docstrings_to_callable(SQUEEZEBERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
@add_start_docstrings_to_model_forward(SQUEEZEBERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="squeezebert/squeezebert-mnli-headless",
......
......@@ -30,7 +30,7 @@ from .file_utils import (
DUMMY_INPUTS,
DUMMY_MASK,
add_start_docstrings,
add_start_docstrings_to_callable,
add_start_docstrings_to_model_forward,
replace_return_docstrings,
)
from .modeling_outputs import BaseModelOutput, BaseModelOutputWithPast, Seq2SeqLMOutput, Seq2SeqModelOutput
......@@ -943,7 +943,7 @@ class T5Model(T5PreTrainedModel):
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_callable(T5_INPUTS_DOCSTRING)
@add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
......@@ -1086,7 +1086,7 @@ class T5ForConditionalGeneration(T5PreTrainedModel):
def get_decoder(self):
return self.decoder
@add_start_docstrings_to_callable(T5_INPUTS_DOCSTRING)
@add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
......
......@@ -28,7 +28,7 @@ from .file_utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_callable,
add_start_docstrings_to_model_forward,
replace_return_docstrings,
)
from .modeling_tf_outputs import (
......@@ -747,7 +747,7 @@ class TFAlbertModel(TFAlbertPreTrainedModel):
super().__init__(config, *inputs, **kwargs)
self.albert = TFAlbertMainLayer(config, name="albert")
@add_start_docstrings_to_callable(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="albert-base-v2",
......@@ -778,7 +778,7 @@ class TFAlbertForPreTraining(TFAlbertPreTrainedModel):
def get_output_embeddings(self):
return self.albert.embeddings
@add_start_docstrings_to_callable(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=TFAlbertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
def call(self, inputs, **kwargs):
r"""
......@@ -847,7 +847,7 @@ class TFAlbertForMaskedLM(TFAlbertPreTrainedModel, TFMaskedLanguageModelingLoss)
def get_output_embeddings(self):
return self.albert.embeddings
@add_start_docstrings_to_callable(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="albert-base-v2",
......@@ -930,7 +930,7 @@ class TFAlbertForSequenceClassification(TFAlbertPreTrainedModel, TFSequenceClass
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
)
@add_start_docstrings_to_callable(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="albert-base-v2",
......@@ -1018,7 +1018,7 @@ class TFAlbertForTokenClassification(TFAlbertPreTrainedModel, TFTokenClassificat
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
)
@add_start_docstrings_to_callable(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="albert-base-v2",
......@@ -1104,7 +1104,7 @@ class TFAlbertForQuestionAnswering(TFAlbertPreTrainedModel, TFQuestionAnsweringL
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs"
)
@add_start_docstrings_to_callable(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="albert-base-v2",
......@@ -1212,7 +1212,7 @@ class TFAlbertForMultipleChoice(TFAlbertPreTrainedModel, TFMultipleChoiceLoss):
"""
return {"input_ids": tf.constant(MULTIPLE_CHOICE_DUMMY_INPUTS)}
@add_start_docstrings_to_callable(ALBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="albert-base-v2",
......
......@@ -25,7 +25,7 @@ from tensorflow.keras.layers import Dense, LayerNormalization
from .activations_tf import ACT2FN
from .configuration_bart import BartConfig
from .file_utils import add_start_docstrings, add_start_docstrings_to_callable, replace_return_docstrings
from .file_utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings
from .modeling_tf_outputs import TFBaseModelOutput, TFBaseModelOutputWithPast, TFSeq2SeqLMOutput, TFSeq2SeqModelOutput
# Public API
......@@ -827,7 +827,7 @@ class TFBartModel(TFPretrainedBartModel):
causal_lm_mask = causal_attention_mask(tgt_len, tgt_len, mask_dtype)
return decoder_input_ids, decoder_padding_mask, causal_lm_mask
@add_start_docstrings_to_callable(BART_INPUTS_DOCSTRING)
@add_start_docstrings_to_model_forward(BART_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFSeq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
def call(
self,
......@@ -961,7 +961,7 @@ class TFBartForConditionalGeneration(TFPretrainedBartModel):
self.model = TFBartModel(config, name="model")
self.use_cache = config.use_cache
@add_start_docstrings_to_callable(BART_INPUTS_DOCSTRING)
@add_start_docstrings_to_model_forward(BART_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
def call(
self,
......
......@@ -28,7 +28,7 @@ from .file_utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_callable,
add_start_docstrings_to_model_forward,
replace_return_docstrings,
)
from .modeling_tf_outputs import (
......@@ -793,7 +793,7 @@ class TFBertModel(TFBertPreTrainedModel):
self.bert = TFBertMainLayer(config, name="bert")
@add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="bert-base-cased",
......@@ -824,7 +824,7 @@ class TFBertForPreTraining(TFBertPreTrainedModel):
def get_output_embeddings(self):
return self.bert.embeddings
@add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=TFBertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
def call(self, inputs, **kwargs):
r"""
......@@ -881,7 +881,7 @@ class TFBertForMaskedLM(TFBertPreTrainedModel, TFMaskedLanguageModelingLoss):
def get_output_embeddings(self):
return self.bert.embeddings
@add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="bert-base-cased",
......@@ -1043,7 +1043,7 @@ class TFBertForNextSentencePrediction(TFBertPreTrainedModel):
self.bert = TFBertMainLayer(config, name="bert")
self.nsp = TFBertNSPHead(config, name="nsp___cls")
@add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=TFNextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC)
def call(self, inputs, **kwargs):
r"""
......@@ -1098,7 +1098,7 @@ class TFBertForSequenceClassification(TFBertPreTrainedModel, TFSequenceClassific
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
)
@add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="bert-base-cased",
......@@ -1191,7 +1191,7 @@ class TFBertForMultipleChoice(TFBertPreTrainedModel, TFMultipleChoiceLoss):
"""
return {"input_ids": tf.constant(MULTIPLE_CHOICE_DUMMY_INPUTS)}
@add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="bert-base-cased",
......@@ -1315,7 +1315,7 @@ class TFBertForTokenClassification(TFBertPreTrainedModel, TFTokenClassificationL
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
)
@add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="bert-base-cased",
......@@ -1400,7 +1400,7 @@ class TFBertForQuestionAnswering(TFBertPreTrainedModel, TFQuestionAnsweringLoss)
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs"
)
@add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="bert-base-cased",
......
......@@ -20,7 +20,7 @@ import numpy as np
import tensorflow as tf
from .configuration_ctrl import CTRLConfig
from .file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_callable
from .file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from .modeling_tf_outputs import TFBaseModelOutputWithPast, TFCausalLMOutputWithPast
from .modeling_tf_utils import (
TFCausalLanguageModelingLoss,
......@@ -547,7 +547,7 @@ class TFCTRLModel(TFCTRLPreTrainedModel):
super().__init__(config, *inputs, **kwargs)
self.transformer = TFCTRLMainLayer(config, name="transformer")
@add_start_docstrings_to_callable(CTRL_INPUTS_DOCSTRING)
@add_start_docstrings_to_model_forward(CTRL_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="ctrl",
......@@ -602,7 +602,7 @@ class TFCTRLLMHeadModel(TFCTRLPreTrainedModel, TFCausalLanguageModelingLoss):
return {"inputs": inputs, "past": past, "use_cache": kwargs["use_cache"]}
@add_start_docstrings_to_callable(CTRL_INPUTS_DOCSTRING)
@add_start_docstrings_to_model_forward(CTRL_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="ctrl",
......
......@@ -25,7 +25,7 @@ from .file_utils import (
MULTIPLE_CHOICE_DUMMY_INPUTS,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_callable,
add_start_docstrings_to_model_forward,
)
from .modeling_tf_outputs import (
TFBaseModelOutput,
......@@ -579,7 +579,7 @@ class TFDistilBertModel(TFDistilBertPreTrainedModel):
super().__init__(config, *inputs, **kwargs)
self.distilbert = TFDistilBertMainLayer(config, name="distilbert") # Embeddings
@add_start_docstrings_to_callable(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="distilbert-base-uncased",
......@@ -630,7 +630,7 @@ class TFDistilBertForMaskedLM(TFDistilBertPreTrainedModel, TFMaskedLanguageModel
def get_output_embeddings(self):
return self.vocab_projector.input_embeddings
@add_start_docstrings_to_callable(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="distilbert-base-uncased",
......@@ -718,7 +718,7 @@ class TFDistilBertForSequenceClassification(TFDistilBertPreTrainedModel, TFSeque
)
self.dropout = tf.keras.layers.Dropout(config.seq_classif_dropout)
@add_start_docstrings_to_callable(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="distilbert-base-uncased",
......@@ -800,7 +800,7 @@ class TFDistilBertForTokenClassification(TFDistilBertPreTrainedModel, TFTokenCla
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
)
@add_start_docstrings_to_callable(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="distilbert-base-uncased",
......@@ -895,7 +895,9 @@ class TFDistilBertForMultipleChoice(TFDistilBertPreTrainedModel, TFMultipleChoic
"""
return {"input_ids": tf.constant(MULTIPLE_CHOICE_DUMMY_INPUTS)}
@add_start_docstrings_to_callable(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_start_docstrings_to_model_forward(
DISTILBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
)
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="distilbert-base-uncased",
......@@ -1007,7 +1009,7 @@ class TFDistilBertForQuestionAnswering(TFDistilBertPreTrainedModel, TFQuestionAn
assert config.num_labels == 2, f"Incorrect number of labels {config.num_labels} instead of 2"
self.dropout = tf.keras.layers.Dropout(config.qa_dropout)
@add_start_docstrings_to_callable(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="distilbert-base-uncased",
......
......@@ -11,7 +11,7 @@ from .file_utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_callable,
add_start_docstrings_to_model_forward,
replace_return_docstrings,
)
from .modeling_tf_outputs import (
......@@ -719,7 +719,7 @@ class TFElectraModel(TFElectraPreTrainedModel):
self.electra = TFElectraMainLayer(config, name="electra")
@add_start_docstrings_to_callable(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="google/electra-small-discriminator",
......@@ -749,7 +749,7 @@ class TFElectraForPreTraining(TFElectraPreTrainedModel):
self.electra = TFElectraMainLayer(config, name="electra")
self.discriminator_predictions = TFElectraDiscriminatorPredictions(config, name="discriminator_predictions")
@add_start_docstrings_to_callable(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=TFElectraForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
def call(
self,
......@@ -858,7 +858,7 @@ class TFElectraForMaskedLM(TFElectraPreTrainedModel, TFMaskedLanguageModelingLos
def get_output_embeddings(self):
return self.generator_lm_head
@add_start_docstrings_to_callable(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="google/electra-small-generator",
......@@ -971,7 +971,7 @@ class TFElectraForSequenceClassification(TFElectraPreTrainedModel, TFSequenceCla
self.electra = TFElectraMainLayer(config, name="electra")
self.classifier = TFElectraClassificationHead(config, name="classifier")
@add_start_docstrings_to_callable(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="google/electra-small-discriminator",
......@@ -1072,7 +1072,7 @@ class TFElectraForMultipleChoice(TFElectraPreTrainedModel, TFMultipleChoiceLoss)
"""
return {"input_ids": tf.constant(MULTIPLE_CHOICE_DUMMY_INPUTS)}
@add_start_docstrings_to_callable(ELECTRA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="google/electra-small-discriminator",
......@@ -1192,7 +1192,7 @@ class TFElectraForTokenClassification(TFElectraPreTrainedModel, TFTokenClassific
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
)
@add_start_docstrings_to_callable(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="google/electra-small-discriminator",
......@@ -1275,7 +1275,7 @@ class TFElectraForQuestionAnswering(TFElectraPreTrainedModel, TFQuestionAnswerin
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs"
)
@add_start_docstrings_to_callable(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="google/electra-small-discriminator",
......
......@@ -25,7 +25,12 @@ import tensorflow as tf
from transformers.activations_tf import get_tf_activation
from .configuration_flaubert import FlaubertConfig
from .file_utils import ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_callable
from .file_utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
)
from .modeling_tf_outputs import TFBaseModelOutput
from .modeling_tf_utils import TFPreTrainedModel, TFSharedEmbeddings, get_initializer, keras_serializable, shape_list
from .modeling_tf_xlm import (
......@@ -217,7 +222,7 @@ class TFFlaubertModel(TFFlaubertPreTrainedModel):
super().__init__(config, *inputs, **kwargs)
self.transformer = TFFlaubertMainLayer(config, name="transformer")
@add_start_docstrings_to_callable(FLAUBERT_INPUTS_DOCSTRING)
@add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="jplu/tf-flaubert-small-cased",
......@@ -721,7 +726,7 @@ class TFFlaubertWithLMHeadModel(TFFlaubertPreTrainedModel):
langs = None
return {"inputs": inputs, "langs": langs}
@add_start_docstrings_to_callable(FLAUBERT_INPUTS_DOCSTRING)
@add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="jplu/tf-flaubert-small-cased",
......
......@@ -27,7 +27,7 @@ from .file_utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_callable,
add_start_docstrings_to_model_forward,
replace_return_docstrings,
)
from .modeling_tf_outputs import (
......@@ -1148,7 +1148,7 @@ class TFFunnelBaseModel(TFFunnelPreTrainedModel):
super().__init__(config, *inputs, **kwargs)
self.funnel = TFFunnelBaseLayer(config, name="funnel")
@add_start_docstrings_to_callable(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="funnel-transformer/small-base",
......@@ -1168,7 +1168,7 @@ class TFFunnelModel(TFFunnelPreTrainedModel):
super().__init__(config, *inputs, **kwargs)
self.funnel = TFFunnelMainLayer(config, name="funnel")
@add_start_docstrings_to_callable(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="funnel-transformer/small",
......@@ -1192,7 +1192,7 @@ class TFFunnelForPreTraining(TFFunnelPreTrainedModel):
self.funnel = TFFunnelMainLayer(config, name="funnel")
self.discriminator_predictions = TFFunnelDiscriminatorPredictions(config, name="discriminator_predictions")
@add_start_docstrings_to_callable(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=TFFunnelForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
def call(
self,
......@@ -1259,7 +1259,7 @@ class TFFunnelForMaskedLM(TFFunnelPreTrainedModel, TFMaskedLanguageModelingLoss)
self.funnel = TFFunnelMainLayer(config, name="funnel")
self.lm_head = TFFunnelMaskedLMHead(config, self.funnel.embeddings, name="lm_head")
@add_start_docstrings_to_callable(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="funnel-transformer/small",
......@@ -1335,7 +1335,7 @@ class TFFunnelForSequenceClassification(TFFunnelPreTrainedModel, TFSequenceClass
self.funnel = TFFunnelBaseLayer(config, name="funnel")
self.classifier = TFFunnelClassificationHead(config, config.num_labels, name="classifier")
@add_start_docstrings_to_callable(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="funnel-transformer/small-base",
......@@ -1421,7 +1421,7 @@ class TFFunnelForMultipleChoice(TFFunnelPreTrainedModel, TFMultipleChoiceLoss):
"""
return {"input_ids": tf.constant(MULTIPLE_CHOICE_DUMMY_INPUTS)}
@add_start_docstrings_to_callable(FUNNEL_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="funnel-transformer/small-base",
......@@ -1534,7 +1534,7 @@ class TFFunnelForTokenClassification(TFFunnelPreTrainedModel, TFTokenClassificat
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
)
@add_start_docstrings_to_callable(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="funnel-transformer/small",
......@@ -1613,7 +1613,7 @@ class TFFunnelForQuestionAnswering(TFFunnelPreTrainedModel, TFQuestionAnsweringL
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs"
)
@add_start_docstrings_to_callable(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="funnel-transformer/small",
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment