Unverified Commit 1d43933f authored by Kamal Raj's avatar Kamal Raj Committed by GitHub
Browse files

Added missing type hints (#16103)

parent efd6e9a8
...@@ -17,7 +17,7 @@ ...@@ -17,7 +17,7 @@
import math import math
import os import os
from dataclasses import dataclass from dataclasses import dataclass
from typing import Optional, Tuple from typing import List, Optional, Tuple, Union
import torch import torch
import torch.utils.checkpoint import torch.utils.checkpoint
...@@ -842,20 +842,20 @@ class ElectraModel(ElectraPreTrainedModel): ...@@ -842,20 +842,20 @@ class ElectraModel(ElectraPreTrainedModel):
) )
def forward( def forward(
self, self,
input_ids=None, input_ids: Optional[torch.Tensor] = None,
attention_mask=None, attention_mask: Optional[torch.Tensor] = None,
token_type_ids=None, token_type_ids: Optional[torch.Tensor] = None,
position_ids=None, position_ids: Optional[torch.Tensor] = None,
head_mask=None, head_mask: Optional[torch.Tensor] = None,
inputs_embeds=None, inputs_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states=None, encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask=None, encoder_attention_mask: Optional[torch.Tensor] = None,
past_key_values=None, past_key_values: Optional[List[torch.FloatTensor]] = None,
use_cache=None, use_cache: Optional[bool] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple, BaseModelOutputWithCrossAttentions]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = ( output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
...@@ -978,17 +978,17 @@ class ElectraForSequenceClassification(ElectraPreTrainedModel): ...@@ -978,17 +978,17 @@ class ElectraForSequenceClassification(ElectraPreTrainedModel):
) )
def forward( def forward(
self, self,
input_ids=None, input_ids: Optional[torch.Tensor] = None,
attention_mask=None, attention_mask: Optional[torch.Tensor] = None,
token_type_ids=None, token_type_ids: Optional[torch.Tensor] = None,
position_ids=None, position_ids: Optional[torch.Tensor] = None,
head_mask=None, head_mask: Optional[torch.Tensor] = None,
inputs_embeds=None, inputs_embeds: Optional[torch.Tensor] = None,
labels=None, labels: Optional[torch.Tensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple, SequenceClassifierOutput]:
r""" r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
...@@ -1068,17 +1068,17 @@ class ElectraForPreTraining(ElectraPreTrainedModel): ...@@ -1068,17 +1068,17 @@ class ElectraForPreTraining(ElectraPreTrainedModel):
@replace_return_docstrings(output_type=ElectraForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) @replace_return_docstrings(output_type=ElectraForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
def forward( def forward(
self, self,
input_ids=None, input_ids: Optional[torch.Tensor] = None,
attention_mask=None, attention_mask: Optional[torch.Tensor] = None,
token_type_ids=None, token_type_ids: Optional[torch.Tensor] = None,
position_ids=None, position_ids: Optional[torch.Tensor] = None,
head_mask=None, head_mask: Optional[torch.Tensor] = None,
inputs_embeds=None, inputs_embeds: Optional[torch.Tensor] = None,
labels=None, labels: Optional[torch.Tensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple, ElectraForPreTrainingOutput]:
r""" r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the ELECTRA loss. Input should be a sequence of tokens (see `input_ids` docstring) Labels for computing the ELECTRA loss. Input should be a sequence of tokens (see `input_ids` docstring)
...@@ -1178,17 +1178,17 @@ class ElectraForMaskedLM(ElectraPreTrainedModel): ...@@ -1178,17 +1178,17 @@ class ElectraForMaskedLM(ElectraPreTrainedModel):
) )
def forward( def forward(
self, self,
input_ids=None, input_ids: Optional[torch.Tensor] = None,
attention_mask=None, attention_mask: Optional[torch.Tensor] = None,
token_type_ids=None, token_type_ids: Optional[torch.Tensor] = None,
position_ids=None, position_ids: Optional[torch.Tensor] = None,
head_mask=None, head_mask: Optional[torch.Tensor] = None,
inputs_embeds=None, inputs_embeds: Optional[torch.Tensor] = None,
labels=None, labels: Optional[torch.Tensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple, MaskedLMOutput]:
r""" r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
...@@ -1262,17 +1262,17 @@ class ElectraForTokenClassification(ElectraPreTrainedModel): ...@@ -1262,17 +1262,17 @@ class ElectraForTokenClassification(ElectraPreTrainedModel):
) )
def forward( def forward(
self, self,
input_ids=None, input_ids: Optional[torch.Tensor] = None,
attention_mask=None, attention_mask: Optional[torch.Tensor] = None,
token_type_ids=None, token_type_ids: Optional[torch.Tensor] = None,
position_ids=None, position_ids: Optional[torch.Tensor] = None,
head_mask=None, head_mask: Optional[torch.Tensor] = None,
inputs_embeds=None, inputs_embeds: Optional[torch.Tensor] = None,
labels=None, labels: Optional[torch.Tensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple, TokenClassifierOutput]:
r""" r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
...@@ -1342,18 +1342,18 @@ class ElectraForQuestionAnswering(ElectraPreTrainedModel): ...@@ -1342,18 +1342,18 @@ class ElectraForQuestionAnswering(ElectraPreTrainedModel):
) )
def forward( def forward(
self, self,
input_ids=None, input_ids: Optional[torch.Tensor] = None,
attention_mask=None, attention_mask: Optional[torch.Tensor] = None,
token_type_ids=None, token_type_ids: Optional[torch.Tensor] = None,
position_ids=None, position_ids: Optional[torch.Tensor] = None,
head_mask=None, head_mask: Optional[torch.Tensor] = None,
inputs_embeds=None, inputs_embeds: Optional[torch.Tensor] = None,
start_positions=None, start_positions: Optional[torch.Tensor] = None,
end_positions=None, end_positions: Optional[torch.Tensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple, QuestionAnsweringModelOutput]:
r""" r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss. Labels for position (index) of the start of the labelled span for computing the token classification loss.
...@@ -1444,17 +1444,17 @@ class ElectraForMultipleChoice(ElectraPreTrainedModel): ...@@ -1444,17 +1444,17 @@ class ElectraForMultipleChoice(ElectraPreTrainedModel):
) )
def forward( def forward(
self, self,
input_ids=None, input_ids: Optional[torch.Tensor] = None,
attention_mask=None, attention_mask: Optional[torch.Tensor] = None,
token_type_ids=None, token_type_ids: Optional[torch.Tensor] = None,
position_ids=None, position_ids: Optional[torch.Tensor] = None,
head_mask=None, head_mask: Optional[torch.Tensor] = None,
inputs_embeds=None, inputs_embeds: Optional[torch.Tensor] = None,
labels=None, labels: Optional[torch.Tensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple, MultipleChoiceModelOutput]:
r""" r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
...@@ -1535,21 +1535,21 @@ class ElectraForCausalLM(ElectraPreTrainedModel): ...@@ -1535,21 +1535,21 @@ class ElectraForCausalLM(ElectraPreTrainedModel):
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
def forward( def forward(
self, self,
input_ids=None, input_ids: Optional[torch.Tensor] = None,
attention_mask=None, attention_mask: Optional[torch.Tensor] = None,
token_type_ids=None, token_type_ids: Optional[torch.Tensor] = None,
position_ids=None, position_ids: Optional[torch.Tensor] = None,
head_mask=None, head_mask: Optional[torch.Tensor] = None,
inputs_embeds=None, inputs_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states=None, encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask=None, encoder_attention_mask: Optional[torch.Tensor] = None,
labels=None, labels: Optional[torch.Tensor] = None,
past_key_values=None, past_key_values: Optional[List[torch.Tensor]] = None,
use_cache=None, use_cache: Optional[bool] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
): ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
r""" r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment