Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
1d43933f
Unverified
Commit
1d43933f
authored
Mar 14, 2022
by
Kamal Raj
Committed by
GitHub
Mar 14, 2022
Browse files
Added missing type hints (#16103)
parent
efd6e9a8
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
97 additions
and
97 deletions
+97
-97
src/transformers/models/electra/modeling_electra.py
src/transformers/models/electra/modeling_electra.py
+97
-97
No files found.
src/transformers/models/electra/modeling_electra.py
View file @
1d43933f
...
@@ -17,7 +17,7 @@
...
@@ -17,7 +17,7 @@
import
math
import
math
import
os
import
os
from
dataclasses
import
dataclass
from
dataclasses
import
dataclass
from
typing
import
Optional
,
Tuple
from
typing
import
List
,
Optional
,
Tuple
,
Union
import
torch
import
torch
import
torch.utils.checkpoint
import
torch.utils.checkpoint
...
@@ -842,20 +842,20 @@ class ElectraModel(ElectraPreTrainedModel):
...
@@ -842,20 +842,20 @@ class ElectraModel(ElectraPreTrainedModel):
)
)
def
forward
(
def
forward
(
self
,
self
,
input_ids
=
None
,
input_ids
:
Optional
[
torch
.
Tensor
]
=
None
,
attention_mask
=
None
,
attention_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
token_type_ids
=
None
,
token_type_ids
:
Optional
[
torch
.
Tensor
]
=
None
,
position_ids
=
None
,
position_ids
:
Optional
[
torch
.
Tensor
]
=
None
,
head_mask
=
None
,
head_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
inputs_embeds
=
None
,
inputs_embeds
:
Optional
[
torch
.
Tensor
]
=
None
,
encoder_hidden_states
=
None
,
encoder_hidden_states
:
Optional
[
torch
.
Tensor
]
=
None
,
encoder_attention_mask
=
None
,
encoder_attention_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
past_key_values
=
None
,
past_key_values
:
Optional
[
List
[
torch
.
FloatTensor
]]
=
None
,
use_cache
=
None
,
use_cache
:
Optional
[
bool
]
=
None
,
output_attentions
=
None
,
output_attentions
:
Optional
[
bool
]
=
None
,
output_hidden_states
=
None
,
output_hidden_states
:
Optional
[
bool
]
=
None
,
return_dict
=
None
,
return_dict
:
Optional
[
bool
]
=
None
,
):
)
->
Union
[
Tuple
,
BaseModelOutputWithCrossAttentions
]
:
output_attentions
=
output_attentions
if
output_attentions
is
not
None
else
self
.
config
.
output_attentions
output_attentions
=
output_attentions
if
output_attentions
is
not
None
else
self
.
config
.
output_attentions
output_hidden_states
=
(
output_hidden_states
=
(
output_hidden_states
if
output_hidden_states
is
not
None
else
self
.
config
.
output_hidden_states
output_hidden_states
if
output_hidden_states
is
not
None
else
self
.
config
.
output_hidden_states
...
@@ -978,17 +978,17 @@ class ElectraForSequenceClassification(ElectraPreTrainedModel):
...
@@ -978,17 +978,17 @@ class ElectraForSequenceClassification(ElectraPreTrainedModel):
)
)
def
forward
(
def
forward
(
self
,
self
,
input_ids
=
None
,
input_ids
:
Optional
[
torch
.
Tensor
]
=
None
,
attention_mask
=
None
,
attention_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
token_type_ids
=
None
,
token_type_ids
:
Optional
[
torch
.
Tensor
]
=
None
,
position_ids
=
None
,
position_ids
:
Optional
[
torch
.
Tensor
]
=
None
,
head_mask
=
None
,
head_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
inputs_embeds
=
None
,
inputs_embeds
:
Optional
[
torch
.
Tensor
]
=
None
,
labels
=
None
,
labels
:
Optional
[
torch
.
Tensor
]
=
None
,
output_attentions
=
None
,
output_attentions
:
Optional
[
bool
]
=
None
,
output_hidden_states
=
None
,
output_hidden_states
:
Optional
[
bool
]
=
None
,
return_dict
=
None
,
return_dict
:
Optional
[
bool
]
=
None
,
):
)
->
Union
[
Tuple
,
SequenceClassifierOutput
]
:
r
"""
r
"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
...
@@ -1068,17 +1068,17 @@ class ElectraForPreTraining(ElectraPreTrainedModel):
...
@@ -1068,17 +1068,17 @@ class ElectraForPreTraining(ElectraPreTrainedModel):
@
replace_return_docstrings
(
output_type
=
ElectraForPreTrainingOutput
,
config_class
=
_CONFIG_FOR_DOC
)
@
replace_return_docstrings
(
output_type
=
ElectraForPreTrainingOutput
,
config_class
=
_CONFIG_FOR_DOC
)
def
forward
(
def
forward
(
self
,
self
,
input_ids
=
None
,
input_ids
:
Optional
[
torch
.
Tensor
]
=
None
,
attention_mask
=
None
,
attention_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
token_type_ids
=
None
,
token_type_ids
:
Optional
[
torch
.
Tensor
]
=
None
,
position_ids
=
None
,
position_ids
:
Optional
[
torch
.
Tensor
]
=
None
,
head_mask
=
None
,
head_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
inputs_embeds
=
None
,
inputs_embeds
:
Optional
[
torch
.
Tensor
]
=
None
,
labels
=
None
,
labels
:
Optional
[
torch
.
Tensor
]
=
None
,
output_attentions
=
None
,
output_attentions
:
Optional
[
bool
]
=
None
,
output_hidden_states
=
None
,
output_hidden_states
:
Optional
[
bool
]
=
None
,
return_dict
=
None
,
return_dict
:
Optional
[
bool
]
=
None
,
):
)
->
Union
[
Tuple
,
ElectraForPreTrainingOutput
]
:
r
"""
r
"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the ELECTRA loss. Input should be a sequence of tokens (see `input_ids` docstring)
Labels for computing the ELECTRA loss. Input should be a sequence of tokens (see `input_ids` docstring)
...
@@ -1178,17 +1178,17 @@ class ElectraForMaskedLM(ElectraPreTrainedModel):
...
@@ -1178,17 +1178,17 @@ class ElectraForMaskedLM(ElectraPreTrainedModel):
)
)
def
forward
(
def
forward
(
self
,
self
,
input_ids
=
None
,
input_ids
:
Optional
[
torch
.
Tensor
]
=
None
,
attention_mask
=
None
,
attention_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
token_type_ids
=
None
,
token_type_ids
:
Optional
[
torch
.
Tensor
]
=
None
,
position_ids
=
None
,
position_ids
:
Optional
[
torch
.
Tensor
]
=
None
,
head_mask
=
None
,
head_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
inputs_embeds
=
None
,
inputs_embeds
:
Optional
[
torch
.
Tensor
]
=
None
,
labels
=
None
,
labels
:
Optional
[
torch
.
Tensor
]
=
None
,
output_attentions
=
None
,
output_attentions
:
Optional
[
bool
]
=
None
,
output_hidden_states
=
None
,
output_hidden_states
:
Optional
[
bool
]
=
None
,
return_dict
=
None
,
return_dict
:
Optional
[
bool
]
=
None
,
):
)
->
Union
[
Tuple
,
MaskedLMOutput
]
:
r
"""
r
"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
...
@@ -1262,17 +1262,17 @@ class ElectraForTokenClassification(ElectraPreTrainedModel):
...
@@ -1262,17 +1262,17 @@ class ElectraForTokenClassification(ElectraPreTrainedModel):
)
)
def
forward
(
def
forward
(
self
,
self
,
input_ids
=
None
,
input_ids
:
Optional
[
torch
.
Tensor
]
=
None
,
attention_mask
=
None
,
attention_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
token_type_ids
=
None
,
token_type_ids
:
Optional
[
torch
.
Tensor
]
=
None
,
position_ids
=
None
,
position_ids
:
Optional
[
torch
.
Tensor
]
=
None
,
head_mask
=
None
,
head_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
inputs_embeds
=
None
,
inputs_embeds
:
Optional
[
torch
.
Tensor
]
=
None
,
labels
=
None
,
labels
:
Optional
[
torch
.
Tensor
]
=
None
,
output_attentions
=
None
,
output_attentions
:
Optional
[
bool
]
=
None
,
output_hidden_states
=
None
,
output_hidden_states
:
Optional
[
bool
]
=
None
,
return_dict
=
None
,
return_dict
:
Optional
[
bool
]
=
None
,
):
)
->
Union
[
Tuple
,
TokenClassifierOutput
]
:
r
"""
r
"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
...
@@ -1342,18 +1342,18 @@ class ElectraForQuestionAnswering(ElectraPreTrainedModel):
...
@@ -1342,18 +1342,18 @@ class ElectraForQuestionAnswering(ElectraPreTrainedModel):
)
)
def
forward
(
def
forward
(
self
,
self
,
input_ids
=
None
,
input_ids
:
Optional
[
torch
.
Tensor
]
=
None
,
attention_mask
=
None
,
attention_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
token_type_ids
=
None
,
token_type_ids
:
Optional
[
torch
.
Tensor
]
=
None
,
position_ids
=
None
,
position_ids
:
Optional
[
torch
.
Tensor
]
=
None
,
head_mask
=
None
,
head_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
inputs_embeds
=
None
,
inputs_embeds
:
Optional
[
torch
.
Tensor
]
=
None
,
start_positions
=
None
,
start_positions
:
Optional
[
torch
.
Tensor
]
=
None
,
end_positions
=
None
,
end_positions
:
Optional
[
torch
.
Tensor
]
=
None
,
output_attentions
=
None
,
output_attentions
:
Optional
[
bool
]
=
None
,
output_hidden_states
=
None
,
output_hidden_states
:
Optional
[
bool
]
=
None
,
return_dict
=
None
,
return_dict
:
Optional
[
bool
]
=
None
,
):
)
->
Union
[
Tuple
,
QuestionAnsweringModelOutput
]
:
r
"""
r
"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Labels for position (index) of the start of the labelled span for computing the token classification loss.
...
@@ -1444,17 +1444,17 @@ class ElectraForMultipleChoice(ElectraPreTrainedModel):
...
@@ -1444,17 +1444,17 @@ class ElectraForMultipleChoice(ElectraPreTrainedModel):
)
)
def
forward
(
def
forward
(
self
,
self
,
input_ids
=
None
,
input_ids
:
Optional
[
torch
.
Tensor
]
=
None
,
attention_mask
=
None
,
attention_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
token_type_ids
=
None
,
token_type_ids
:
Optional
[
torch
.
Tensor
]
=
None
,
position_ids
=
None
,
position_ids
:
Optional
[
torch
.
Tensor
]
=
None
,
head_mask
=
None
,
head_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
inputs_embeds
=
None
,
inputs_embeds
:
Optional
[
torch
.
Tensor
]
=
None
,
labels
=
None
,
labels
:
Optional
[
torch
.
Tensor
]
=
None
,
output_attentions
=
None
,
output_attentions
:
Optional
[
bool
]
=
None
,
output_hidden_states
=
None
,
output_hidden_states
:
Optional
[
bool
]
=
None
,
return_dict
=
None
,
return_dict
:
Optional
[
bool
]
=
None
,
):
)
->
Union
[
Tuple
,
MultipleChoiceModelOutput
]
:
r
"""
r
"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
...
@@ -1535,21 +1535,21 @@ class ElectraForCausalLM(ElectraPreTrainedModel):
...
@@ -1535,21 +1535,21 @@ class ElectraForCausalLM(ElectraPreTrainedModel):
@
replace_return_docstrings
(
output_type
=
CausalLMOutputWithCrossAttentions
,
config_class
=
_CONFIG_FOR_DOC
)
@
replace_return_docstrings
(
output_type
=
CausalLMOutputWithCrossAttentions
,
config_class
=
_CONFIG_FOR_DOC
)
def
forward
(
def
forward
(
self
,
self
,
input_ids
=
None
,
input_ids
:
Optional
[
torch
.
Tensor
]
=
None
,
attention_mask
=
None
,
attention_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
token_type_ids
=
None
,
token_type_ids
:
Optional
[
torch
.
Tensor
]
=
None
,
position_ids
=
None
,
position_ids
:
Optional
[
torch
.
Tensor
]
=
None
,
head_mask
=
None
,
head_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
inputs_embeds
=
None
,
inputs_embeds
:
Optional
[
torch
.
Tensor
]
=
None
,
encoder_hidden_states
=
None
,
encoder_hidden_states
:
Optional
[
torch
.
Tensor
]
=
None
,
encoder_attention_mask
=
None
,
encoder_attention_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
labels
=
None
,
labels
:
Optional
[
torch
.
Tensor
]
=
None
,
past_key_values
=
None
,
past_key_values
:
Optional
[
List
[
torch
.
Tensor
]]
=
None
,
use_cache
=
None
,
use_cache
:
Optional
[
bool
]
=
None
,
output_attentions
=
None
,
output_attentions
:
Optional
[
bool
]
=
None
,
output_hidden_states
=
None
,
output_hidden_states
:
Optional
[
bool
]
=
None
,
return_dict
=
None
,
return_dict
:
Optional
[
bool
]
=
None
,
):
)
->
Union
[
Tuple
,
CausalLMOutputWithCrossAttentions
]
:
r
"""
r
"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment