"fairseq/examples/criss/README.md" did not exist on "541f4c7a9c7fde566bbc97b23d87605a3ce8ecfe"
test_pipelines_common.py 9.01 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from typing import List, Optional
16
from unittest import mock
17
18

from transformers import is_tf_available, is_torch_available, pipeline
19
from transformers.file_utils import to_py_obj
20
from transformers.pipelines import Pipeline
21
22
23
24
25
26
27
28
29
from transformers.testing_utils import _run_slow_tests, is_pipeline_test, require_tf, require_torch, slow


VALID_INPUTS = ["A simple string", ["list of strings"]]


@is_pipeline_test
class CustomInputPipelineCommonMixin:
    pipeline_task = None
30
31
32
33
34
    pipeline_loading_kwargs = {}  # Additional kwargs to load the pipeline with
    pipeline_running_kwargs = {}  # Additional kwargs to run the pipeline with
    small_models = []  # Models tested without the @slow decorator
    large_models = []  # Models tested with the @slow decorator
    valid_inputs = VALID_INPUTS  # Some inputs which are valid to compare fast and slow tokenizers
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

    def setUp(self) -> None:
        if not is_tf_available() and not is_torch_available():
            return  # Currently no JAX pipelines

        # Download needed checkpoints
        models = self.small_models
        if _run_slow_tests:
            models = models + self.large_models

        for model_name in models:
            if is_torch_available():
                pipeline(
                    self.pipeline_task,
                    model=model_name,
                    tokenizer=model_name,
                    framework="pt",
                    **self.pipeline_loading_kwargs,
                )
            if is_tf_available():
                pipeline(
                    self.pipeline_task,
                    model=model_name,
                    tokenizer=model_name,
                    framework="tf",
                    **self.pipeline_loading_kwargs,
                )

    @require_torch
    @slow
    def test_pt_defaults(self):
        pipeline(self.pipeline_task, framework="pt", **self.pipeline_loading_kwargs)

    @require_tf
    @slow
70
    def test_tf_defaults(self):
71
72
73
74
75
        pipeline(self.pipeline_task, framework="tf", **self.pipeline_loading_kwargs)

    @require_torch
    def test_torch_small(self):
        for model_name in self.small_models:
76
            pipe_small = pipeline(
77
78
79
80
81
82
                task=self.pipeline_task,
                model=model_name,
                tokenizer=model_name,
                framework="pt",
                **self.pipeline_loading_kwargs,
            )
83
            self._test_pipeline(pipe_small)
84
85
86
87

    @require_tf
    def test_tf_small(self):
        for model_name in self.small_models:
88
            pipe_small = pipeline(
89
90
91
92
93
94
                task=self.pipeline_task,
                model=model_name,
                tokenizer=model_name,
                framework="tf",
                **self.pipeline_loading_kwargs,
            )
95
            self._test_pipeline(pipe_small)
96
97
98
99
100

    @require_torch
    @slow
    def test_torch_large(self):
        for model_name in self.large_models:
101
            pipe_large = pipeline(
102
103
104
105
106
107
                task=self.pipeline_task,
                model=model_name,
                tokenizer=model_name,
                framework="pt",
                **self.pipeline_loading_kwargs,
            )
108
            self._test_pipeline(pipe_large)
109
110
111
112
113

    @require_tf
    @slow
    def test_tf_large(self):
        for model_name in self.large_models:
114
            pipe_large = pipeline(
115
116
117
118
119
120
                task=self.pipeline_task,
                model=model_name,
                tokenizer=model_name,
                framework="tf",
                **self.pipeline_loading_kwargs,
            )
121
            self._test_pipeline(pipe_large)
122

123
    def _test_pipeline(self, pipe: Pipeline):
124
125
126
127
128
        raise NotImplementedError

    @require_torch
    def test_compare_slow_fast_torch(self):
        for model_name in self.small_models:
129
            pipe_slow = pipeline(
130
131
132
133
134
135
136
                task=self.pipeline_task,
                model=model_name,
                tokenizer=model_name,
                framework="pt",
                use_fast=False,
                **self.pipeline_loading_kwargs,
            )
137
            pipe_fast = pipeline(
138
139
140
141
142
143
144
                task=self.pipeline_task,
                model=model_name,
                tokenizer=model_name,
                framework="pt",
                use_fast=True,
                **self.pipeline_loading_kwargs,
            )
145
            self._compare_slow_fast_pipelines(pipe_slow, pipe_fast, method="forward")
146
147
148
149

    @require_tf
    def test_compare_slow_fast_tf(self):
        for model_name in self.small_models:
150
            pipe_slow = pipeline(
151
152
153
154
155
156
157
                task=self.pipeline_task,
                model=model_name,
                tokenizer=model_name,
                framework="tf",
                use_fast=False,
                **self.pipeline_loading_kwargs,
            )
158
            pipe_fast = pipeline(
159
160
161
162
163
164
165
                task=self.pipeline_task,
                model=model_name,
                tokenizer=model_name,
                framework="tf",
                use_fast=True,
                **self.pipeline_loading_kwargs,
            )
166
            self._compare_slow_fast_pipelines(pipe_slow, pipe_fast, method="call")
167

168
    def _compare_slow_fast_pipelines(self, pipe_slow: Pipeline, pipe_fast: Pipeline, method: str):
169
170
171
172
        """We check that the inputs to the models forward passes are identical for
        slow and fast tokenizers.
        """
        with mock.patch.object(
173
174
175
176
            pipe_slow.model, method, wraps=getattr(pipe_slow.model, method)
        ) as mock_slow, mock.patch.object(
            pipe_fast.model, method, wraps=getattr(pipe_fast.model, method)
        ) as mock_fast:
177
178
179
            for inputs in self.valid_inputs:
                if isinstance(inputs, dict):
                    inputs.update(self.pipeline_running_kwargs)
180
181
                    _ = pipe_slow(**inputs)
                    _ = pipe_fast(**inputs)
182
                else:
183
184
                    _ = pipe_slow(inputs, **self.pipeline_running_kwargs)
                    _ = pipe_fast(inputs, **self.pipeline_running_kwargs)
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213

                mock_slow.assert_called()
                mock_fast.assert_called()

                self.assertEqual(len(mock_slow.call_args_list), len(mock_fast.call_args_list))
                for mock_slow_call_args, mock_fast_call_args in zip(
                    mock_slow.call_args_list, mock_slow.call_args_list
                ):
                    slow_call_args, slow_call_kwargs = mock_slow_call_args
                    fast_call_args, fast_call_kwargs = mock_fast_call_args

                    slow_call_args, slow_call_kwargs = to_py_obj(slow_call_args), to_py_obj(slow_call_kwargs)
                    fast_call_args, fast_call_kwargs = to_py_obj(fast_call_args), to_py_obj(fast_call_kwargs)

                    self.assertEqual(slow_call_args, fast_call_args)
                    self.assertDictEqual(slow_call_kwargs, fast_call_kwargs)


@is_pipeline_test
class MonoInputPipelineCommonMixin(CustomInputPipelineCommonMixin):
    """A version of the CustomInputPipelineCommonMixin
    with a predefined `_test_pipeline` method.
    """

    mandatory_keys = {}  # Keys which should be in the output
    invalid_inputs = [None]  # inputs which are not allowed
    expected_multi_result: Optional[List] = None
    expected_check_keys: Optional[List[str]] = None

214
215
    def _test_pipeline(self, pipe: Pipeline):
        self.assertIsNotNone(pipe)
216

217
        mono_result = pipe(self.valid_inputs[0], **self.pipeline_running_kwargs)
218
219
220
221
222
223
224
225
226
        self.assertIsInstance(mono_result, list)
        self.assertIsInstance(mono_result[0], (dict, list))

        if isinstance(mono_result[0], list):
            mono_result = mono_result[0]

        for key in self.mandatory_keys:
            self.assertIn(key, mono_result[0])

227
        multi_result = [pipe(input, **self.pipeline_running_kwargs) for input in self.valid_inputs]
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
        self.assertIsInstance(multi_result, list)
        self.assertIsInstance(multi_result[0], (dict, list))

        if self.expected_multi_result is not None:
            for result, expect in zip(multi_result, self.expected_multi_result):
                for key in self.expected_check_keys or []:
                    self.assertEqual(
                        set([o[key] for o in result]),
                        set([o[key] for o in expect]),
                    )

        if isinstance(multi_result[0], list):
            multi_result = multi_result[0]

        for result in multi_result:
            for key in self.mandatory_keys:
                self.assertIn(key, result)

246
        self.assertRaises(Exception, pipe, self.invalid_inputs)