binarized_data.py 3.45 KB
Newer Older
VictorSanh's avatar
VictorSanh committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
VictorSanh's avatar
VictorSanh committed
16
Preprocessing script before distillation.
VictorSanh's avatar
VictorSanh committed
17
"""
VictorSanh's avatar
VictorSanh committed
18
19
20
21
22
import argparse
import pickle
import random
import time
import numpy as np
VictorSanh's avatar
VictorSanh committed
23
from transformers import BertTokenizer, RobertaTokenizer, GPT2Tokenizer
24
import logging
VictorSanh's avatar
VictorSanh committed
25

26
27
28
logging.basicConfig(
    format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO
)
29
logger = logging.getLogger(__name__)
VictorSanh's avatar
VictorSanh committed
30

31

VictorSanh's avatar
VictorSanh committed
32
def main():
33
34
35
36
37
38
39
    parser = argparse.ArgumentParser(
        description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids)."
    )
    parser.add_argument("--file_path", type=str, default="data/dump.txt", help="The path to the data.")
    parser.add_argument("--tokenizer_type", type=str, default="bert", choices=["bert", "roberta", "gpt2"])
    parser.add_argument("--tokenizer_name", type=str, default="bert-base-uncased", help="The tokenizer to use.")
    parser.add_argument("--dump_file", type=str, default="data/dump", help="The dump file prefix.")
VictorSanh's avatar
VictorSanh committed
40
41
    args = parser.parse_args()

42
43
    logger.info(f"Loading Tokenizer ({args.tokenizer_name})")
    if args.tokenizer_type == "bert":
44
        tokenizer = BertTokenizer.from_pretrained(args.tokenizer_name)
45
46
47
        bos = tokenizer.special_tokens_map["cls_token"]  # `[CLS]`
        sep = tokenizer.special_tokens_map["sep_token"]  # `[SEP]`
    elif args.tokenizer_type == "roberta":
48
        tokenizer = RobertaTokenizer.from_pretrained(args.tokenizer_name)
49
50
51
        bos = tokenizer.special_tokens_map["cls_token"]  # `<s>`
        sep = tokenizer.special_tokens_map["sep_token"]  # `</s>`
    elif args.tokenizer_type == "gpt2":
VictorSanh's avatar
VictorSanh committed
52
        tokenizer = GPT2Tokenizer.from_pretrained(args.tokenizer_name)
53
54
        bos = tokenizer.special_tokens_map["bos_token"]  # `<|endoftext|>`
        sep = tokenizer.special_tokens_map["eos_token"]  # `<|endoftext|>`
VictorSanh's avatar
VictorSanh committed
55

56
57
    logger.info(f"Loading text from {args.file_path}")
    with open(args.file_path, "r", encoding="utf8") as fp:
VictorSanh's avatar
VictorSanh committed
58
59
        data = fp.readlines()

60
61
    logger.info(f"Start encoding")
    logger.info(f"{len(data)} examples to process.")
VictorSanh's avatar
VictorSanh committed
62
63
64
65
66
67

    rslt = []
    iter = 0
    interval = 10000
    start = time.time()
    for text in data:
68
        text = f"{bos} {text.strip()} {sep}"
Lysandre's avatar
Remove  
Lysandre committed
69
        token_ids = tokenizer.encode(text, add_special_tokens=False)
VictorSanh's avatar
VictorSanh committed
70
71
72
73
74
        rslt.append(token_ids)

        iter += 1
        if iter % interval == 0:
            end = time.time()
75
            logger.info(f"{iter} examples processed. - {(end-start)/interval:.2f}s/expl")
VictorSanh's avatar
VictorSanh committed
76
            start = time.time()
77
78
    logger.info("Finished binarization")
    logger.info(f"{len(data)} examples processed.")
VictorSanh's avatar
VictorSanh committed
79

80
    dp_file = f"{args.dump_file}.{args.tokenizer_name}.pickle"
VictorSanh's avatar
VictorSanh committed
81
82
    rslt_ = [np.uint16(d) for d in rslt]
    random.shuffle(rslt_)
83
84
    logger.info(f"Dump to {dp_file}")
    with open(dp_file, "wb") as handle:
VictorSanh's avatar
VictorSanh committed
85
86
87
88
        pickle.dump(rslt_, handle, protocol=pickle.HIGHEST_PROTOCOL)


if __name__ == "__main__":
89
    main()