binarized_data.py 3.52 KB
Newer Older
VictorSanh's avatar
VictorSanh committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
VictorSanh's avatar
VictorSanh committed
16
Preprocessing script before distillation.
VictorSanh's avatar
VictorSanh committed
17
"""
VictorSanh's avatar
VictorSanh committed
18
19
20
21
22
import argparse
import pickle
import random
import time
import numpy as np
VictorSanh's avatar
VictorSanh committed
23
from transformers import BertTokenizer, RobertaTokenizer, GPT2Tokenizer
24
import logging
VictorSanh's avatar
VictorSanh committed
25

26
27
28
29
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                    datefmt = '%m/%d/%Y %H:%M:%S',
                    level = logging.INFO)
logger = logging.getLogger(__name__)
VictorSanh's avatar
VictorSanh committed
30
31
32
33
34

def main():
    parser = argparse.ArgumentParser(description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).")
    parser.add_argument('--file_path', type=str, default='data/dump.txt',
                        help='The path to the data.')
VictorSanh's avatar
VictorSanh committed
35
    parser.add_argument('--tokenizer_type', type=str, default='bert', choices=['bert', 'roberta', 'gpt2'])
36
    parser.add_argument('--tokenizer_name', type=str, default='bert-base-uncased',
VictorSanh's avatar
VictorSanh committed
37
38
39
40
41
42
                        help="The tokenizer to use.")
    parser.add_argument('--dump_file', type=str, default='data/dump',
                        help='The dump file prefix.')
    args = parser.parse_args()


43
44
45
    logger.info(f'Loading Tokenizer ({args.tokenizer_name})')
    if args.tokenizer_type == 'bert':
        tokenizer = BertTokenizer.from_pretrained(args.tokenizer_name)
VictorSanh's avatar
VictorSanh committed
46
47
        bos = tokenizer.special_tokens_map['cls_token'] # `[CLS]`
        sep = tokenizer.special_tokens_map['sep_token'] # `[SEP]`
48
49
    elif args.tokenizer_type == 'roberta':
        tokenizer = RobertaTokenizer.from_pretrained(args.tokenizer_name)
VictorSanh's avatar
VictorSanh committed
50
51
52
53
54
55
        bos = tokenizer.special_tokens_map['cls_token'] # `<s>`
        sep = tokenizer.special_tokens_map['sep_token'] # `</s>`
    elif args.tokenizer_type == 'gpt2':
        tokenizer = GPT2Tokenizer.from_pretrained(args.tokenizer_name)
        bos = tokenizer.special_tokens_map['bos_token'] # `<|endoftext|>`
        sep = tokenizer.special_tokens_map['eos_token'] # `<|endoftext|>`    
VictorSanh's avatar
VictorSanh committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69

    logger.info(f'Loading text from {args.file_path}')
    with open(args.file_path, 'r', encoding='utf8') as fp:
        data = fp.readlines()


    logger.info(f'Start encoding')
    logger.info(f'{len(data)} examples to process.')

    rslt = []
    iter = 0
    interval = 10000
    start = time.time()
    for text in data:
70
71
        text = f'{bos} {text.strip()} {sep}'
        token_ids = tokenizer.encode(text)
VictorSanh's avatar
VictorSanh committed
72
73
74
75
76
77
78
79
80
81
82
        rslt.append(token_ids)

        iter += 1
        if iter % interval == 0:
            end = time.time()
            logger.info(f'{iter} examples processed. - {(end-start)/interval:.2f}s/expl')
            start = time.time()
    logger.info('Finished binarization')
    logger.info(f'{len(data)} examples processed.')


83
    dp_file = f'{args.dump_file}.{args.tokenizer_name}.pickle'
VictorSanh's avatar
VictorSanh committed
84
85
86
87
88
89
90
91
    rslt_ = [np.uint16(d) for d in rslt]
    random.shuffle(rslt_)
    logger.info(f'Dump to {dp_file}')
    with open(dp_file, 'wb') as handle:
        pickle.dump(rslt_, handle, protocol=pickle.HIGHEST_PROTOCOL)


if __name__ == "__main__":
92
    main()