run_ner.py 23.6 KB
Newer Older
1
#!/usr/bin/env python
2
# coding=utf-8
3
# Copyright 2020 The HuggingFace Team All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
17
18
"""
Fine-tuning the library models for token classification.
"""
Sylvain Gugger's avatar
Sylvain Gugger committed
19
20
# You can also adapt this script on your own token classification task and datasets. Pointers for this are left as
# comments.
21

22
23
import logging
import os
24
import sys
Julien Chaumond's avatar
Julien Chaumond committed
25
from dataclasses import dataclass, field
26
from typing import Optional
27

28
import datasets
29
import numpy as np
30
from datasets import ClassLabel, load_dataset, load_metric
Aymeric Augustin's avatar
Aymeric Augustin committed
31

32
import transformers
Aymeric Augustin's avatar
Aymeric Augustin committed
33
from transformers import (
34
35
36
    AutoConfig,
    AutoModelForTokenClassification,
    AutoTokenizer,
37
    DataCollatorForTokenClassification,
Julien Chaumond's avatar
Julien Chaumond committed
38
    HfArgumentParser,
39
    PreTrainedTokenizerFast,
Julien Chaumond's avatar
Julien Chaumond committed
40
41
42
    Trainer,
    TrainingArguments,
    set_seed,
Aymeric Augustin's avatar
Aymeric Augustin committed
43
)
44
from transformers.trainer_utils import get_last_checkpoint
45
from transformers.utils import check_min_version
46
from transformers.utils.versions import require_version
Aymeric Augustin's avatar
Aymeric Augustin committed
47
48


49
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Patrick von Platen's avatar
Patrick von Platen committed
50
check_min_version("4.16.0.dev0")
Sylvain Gugger's avatar
Sylvain Gugger committed
51

52
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/token-classification/requirements.txt")
53

54
55
56
logger = logging.getLogger(__name__)


Julien Chaumond's avatar
Julien Chaumond committed
57
58
59
60
61
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """
62

Julien Chaumond's avatar
Julien Chaumond committed
63
64
    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
65
    )
Julien Chaumond's avatar
Julien Chaumond committed
66
67
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
68
    )
Julien Chaumond's avatar
Julien Chaumond committed
69
70
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
71
    )
Julien Chaumond's avatar
Julien Chaumond committed
72
    cache_dir: Optional[str] = field(
73
74
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
75
    )
76
77
78
79
80
81
82
83
84
85
86
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
            "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
            "with private models)."
        },
    )
87
88


Julien Chaumond's avatar
Julien Chaumond committed
89
90
91
92
93
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """
94

95
96
97
98
99
100
    task_name: Optional[str] = field(default="ner", metadata={"help": "The name of the task (ner, pos...)."})
    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
101
    )
102
103
104
105
    train_file: Optional[str] = field(
        default=None, metadata={"help": "The input training data file (a csv or JSON file)."}
    )
    validation_file: Optional[str] = field(
106
        default=None,
107
        metadata={"help": "An optional input evaluation data file to evaluate on (a csv or JSON file)."},
108
    )
109
110
111
    test_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input test data file to predict on (a csv or JSON file)."},
112
    )
113
114
115
116
117
118
    text_column_name: Optional[str] = field(
        default=None, metadata={"help": "The column name of text to input in the file (a csv or JSON file)."}
    )
    label_column_name: Optional[str] = field(
        default=None, metadata={"help": "The column name of label to input in the file (a csv or JSON file)."}
    )
Julien Chaumond's avatar
Julien Chaumond committed
119
120
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
121
    )
122
123
124
125
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
126
127
128
129
130
131
132
    max_seq_length: int = field(
        default=None,
        metadata={
            "help": "The maximum total input sequence length after tokenization. If set, sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
    )
133
134
135
136
137
138
139
140
    pad_to_max_length: bool = field(
        default=False,
        metadata={
            "help": "Whether to pad all samples to model maximum sentence length. "
            "If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
            "efficient on GPU but very bad for TPU."
        },
    )
141
142
143
144
145
146
147
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
            "value if set."
        },
    )
148
    max_eval_samples: Optional[int] = field(
149
150
        default=None,
        metadata={
151
            "help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
152
153
154
            "value if set."
        },
    )
155
    max_predict_samples: Optional[int] = field(
156
157
        default=None,
        metadata={
158
            "help": "For debugging purposes or quicker training, truncate the number of prediction examples to this "
159
160
161
            "value if set."
        },
    )
162
163
164
165
166
167
168
    label_all_tokens: bool = field(
        default=False,
        metadata={
            "help": "Whether to put the label for one word on all tokens of generated by that word or just on the "
            "one (in which case the other tokens will have a padding index)."
        },
    )
169
170
171
172
    return_entity_level_metrics: bool = field(
        default=False,
        metadata={"help": "Whether to return all the entity levels during evaluation or just the overall ones."},
    )
173
174
175
176
177
178
179
180
181
182
183
184

    def __post_init__(self):
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
        self.task_name = self.task_name.lower()
185

Julien Chaumond's avatar
Julien Chaumond committed
186
187
188
189
190
191
192

def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
193
194
195
196
197
198
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()
199
200

    # Setup logging
201
    logging.basicConfig(
202
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
203
        datefmt="%m/%d/%Y %H:%M:%S",
204
        handlers=[logging.StreamHandler(sys.stdout)],
205
    )
206
207
208
209
210
211
212

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
213
214

    # Log on each process the small summary:
215
    logger.warning(
216
217
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
218
    )
219
    logger.info(f"Training/evaluation parameters {training_args}")
220

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

236
    # Set seed before initializing model.
Julien Chaumond's avatar
Julien Chaumond committed
237
    set_seed(training_args.seed)
238

239
240
241
242
243
244
245
246
247
248
249
    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
250
251
252
        raw_datasets = load_dataset(
            data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir
        )
253
254
255
256
257
258
259
260
261
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
        if data_args.test_file is not None:
            data_files["test"] = data_args.test_file
        extension = data_args.train_file.split(".")[-1]
262
        raw_datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)
263
264
265
266
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    if training_args.do_train:
267
268
        column_names = raw_datasets["train"].column_names
        features = raw_datasets["train"].features
269
    else:
270
271
        column_names = raw_datasets["validation"].column_names
        features = raw_datasets["validation"].features
272
273
274
275
276
277
278
279
280
281
282
283
284
285

    if data_args.text_column_name is not None:
        text_column_name = data_args.text_column_name
    elif "tokens" in column_names:
        text_column_name = "tokens"
    else:
        text_column_name = column_names[0]

    if data_args.label_column_name is not None:
        label_column_name = data_args.label_column_name
    elif f"{data_args.task_name}_tags" in column_names:
        label_column_name = f"{data_args.task_name}_tags"
    else:
        label_column_name = column_names[1]
286

Sylvain Gugger's avatar
Sylvain Gugger committed
287
288
    # In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the
    # unique labels.
289
290
291
292
293
294
295
296
    def get_label_list(labels):
        unique_labels = set()
        for label in labels:
            unique_labels = unique_labels | set(label)
        label_list = list(unique_labels)
        label_list.sort()
        return label_list

Sylvain Gugger's avatar
Sylvain Gugger committed
297
298
299
300
301
    if isinstance(features[label_column_name].feature, ClassLabel):
        label_list = features[label_column_name].feature.names
        # No need to convert the labels since they are already ints.
        label_to_id = {i: i for i in range(len(label_list))}
    else:
302
        label_list = get_label_list(raw_datasets["train"][label_column_name])
Sylvain Gugger's avatar
Sylvain Gugger committed
303
        label_to_id = {l: i for i, l in enumerate(label_list)}
304
    num_labels = len(label_list)
305

306
307
308
309
310
311
312
313
    # Map that sends B-Xxx label to its I-Xxx counterpart
    b_to_i_label = []
    for idx, label in enumerate(label_list):
        if label.startswith("B-") and label.replace("B-", "I-") in label_list:
            b_to_i_label.append(label_list.index(label.replace("B-", "I-")))
        else:
            b_to_i_label.append(idx)

314
    # Load pretrained model and tokenizer
Julien Chaumond's avatar
Julien Chaumond committed
315
316
317
318
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
319
    config = AutoConfig.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
320
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
321
        num_labels=num_labels,
322
323
        label2id=label_to_id,
        id2label={i: l for l, i in label_to_id.items()},
324
        finetuning_task=data_args.task_name,
Julien Chaumond's avatar
Julien Chaumond committed
325
        cache_dir=model_args.cache_dir,
326
327
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
328
    )
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

    tokenizer_name_or_path = model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path
    if config.model_type in {"gpt2", "roberta"}:
        tokenizer = AutoTokenizer.from_pretrained(
            tokenizer_name_or_path,
            cache_dir=model_args.cache_dir,
            use_fast=True,
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
            add_prefix_space=True,
        )
    else:
        tokenizer = AutoTokenizer.from_pretrained(
            tokenizer_name_or_path,
            cache_dir=model_args.cache_dir,
            use_fast=True,
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
        )

349
    model = AutoModelForTokenClassification.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
350
351
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
352
        config=config,
Julien Chaumond's avatar
Julien Chaumond committed
353
        cache_dir=model_args.cache_dir,
354
355
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
356
    )
357

358
359
360
361
    # Tokenizer check: this script requires a fast tokenizer.
    if not isinstance(tokenizer, PreTrainedTokenizerFast):
        raise ValueError(
            "This example script only works for models that have a fast tokenizer. Checkout the big table of models "
362
            "at https://huggingface.co/transformers/index.html#supported-frameworks to find the model types that meet this "
363
364
365
            "requirement"
        )

366
367
368
369
370
371
372
373
374
375
    # Preprocessing the dataset
    # Padding strategy
    padding = "max_length" if data_args.pad_to_max_length else False

    # Tokenize all texts and align the labels with them.
    def tokenize_and_align_labels(examples):
        tokenized_inputs = tokenizer(
            examples[text_column_name],
            padding=padding,
            truncation=True,
376
            max_length=data_args.max_seq_length,
377
378
            # We use this argument because the texts in our dataset are lists of words (with a label for each word).
            is_split_into_words=True,
Julien Chaumond's avatar
Julien Chaumond committed
379
        )
380
        labels = []
381
382
383
        for i, label in enumerate(examples[label_column_name]):
            word_ids = tokenized_inputs.word_ids(batch_index=i)
            previous_word_idx = None
384
            label_ids = []
385
386
387
388
            for word_idx in word_ids:
                # Special tokens have a word id that is None. We set the label to -100 so they are automatically
                # ignored in the loss function.
                if word_idx is None:
389
                    label_ids.append(-100)
390
391
392
                # We set the label for the first token of each word.
                elif word_idx != previous_word_idx:
                    label_ids.append(label_to_id[label[word_idx]])
393
394
395
                # For the other tokens in a word, we set the label to either the current label or -100, depending on
                # the label_all_tokens flag.
                else:
396
397
398
399
                    if data_args.label_all_tokens:
                        label_ids.append(b_to_i_label[label_to_id[label[word_idx]]])
                    else:
                        label_ids.append(-100)
400
                previous_word_idx = word_idx
401
402
403
404
405

            labels.append(label_ids)
        tokenized_inputs["labels"] = labels
        return tokenized_inputs

406
    if training_args.do_train:
407
        if "train" not in raw_datasets:
408
            raise ValueError("--do_train requires a train dataset")
409
        train_dataset = raw_datasets["train"]
410
411
        if data_args.max_train_samples is not None:
            train_dataset = train_dataset.select(range(data_args.max_train_samples))
412
413
414
415
416
417
418
419
        with training_args.main_process_first(desc="train dataset map pre-processing"):
            train_dataset = train_dataset.map(
                tokenize_and_align_labels,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on train dataset",
            )
420
421

    if training_args.do_eval:
422
        if "validation" not in raw_datasets:
423
            raise ValueError("--do_eval requires a validation dataset")
424
        eval_dataset = raw_datasets["validation"]
425
426
        if data_args.max_eval_samples is not None:
            eval_dataset = eval_dataset.select(range(data_args.max_eval_samples))
427
428
429
430
431
432
433
434
        with training_args.main_process_first(desc="validation dataset map pre-processing"):
            eval_dataset = eval_dataset.map(
                tokenize_and_align_labels,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on validation dataset",
            )
435
436

    if training_args.do_predict:
437
        if "test" not in raw_datasets:
438
            raise ValueError("--do_predict requires a test dataset")
439
        predict_dataset = raw_datasets["test"]
440
441
        if data_args.max_predict_samples is not None:
            predict_dataset = predict_dataset.select(range(data_args.max_predict_samples))
442
443
444
445
446
447
448
449
        with training_args.main_process_first(desc="prediction dataset map pre-processing"):
            predict_dataset = predict_dataset.map(
                tokenize_and_align_labels,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on prediction dataset",
            )
Julien Chaumond's avatar
Julien Chaumond committed
450

451
    # Data collator
452
    data_collator = DataCollatorForTokenClassification(tokenizer, pad_to_multiple_of=8 if training_args.fp16 else None)
Julien Chaumond's avatar
Julien Chaumond committed
453

454
    # Metrics
455
456
    metric = load_metric("seqeval")

457
458
459
    def compute_metrics(p):
        predictions, labels = p
        predictions = np.argmax(predictions, axis=2)
Julien Chaumond's avatar
Julien Chaumond committed
460

461
462
463
464
465
466
467
468
469
        # Remove ignored index (special tokens)
        true_predictions = [
            [label_list[p] for (p, l) in zip(prediction, label) if l != -100]
            for prediction, label in zip(predictions, labels)
        ]
        true_labels = [
            [label_list[l] for (p, l) in zip(prediction, label) if l != -100]
            for prediction, label in zip(predictions, labels)
        ]
Julien Chaumond's avatar
Julien Chaumond committed
470

471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
        results = metric.compute(predictions=true_predictions, references=true_labels)
        if data_args.return_entity_level_metrics:
            # Unpack nested dictionaries
            final_results = {}
            for key, value in results.items():
                if isinstance(value, dict):
                    for n, v in value.items():
                        final_results[f"{key}_{n}"] = v
                else:
                    final_results[key] = value
            return final_results
        else:
            return {
                "precision": results["overall_precision"],
                "recall": results["overall_recall"],
                "f1": results["overall_f1"],
                "accuracy": results["overall_accuracy"],
            }
Julien Chaumond's avatar
Julien Chaumond committed
489
490
491
492
493

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
494
495
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
496
497
        tokenizer=tokenizer,
        data_collator=data_collator,
Julien Chaumond's avatar
Julien Chaumond committed
498
499
        compute_metrics=compute_metrics,
    )
500
501

    # Training
Julien Chaumond's avatar
Julien Chaumond committed
502
    if training_args.do_train:
503
504
505
506
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
507
508
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
509
        metrics = train_result.metrics
510
        trainer.save_model()  # Saves the tokenizer too for easy upload
511

512
513
514
515
516
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

517
518
519
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
520

521
    # Evaluation
522
    if training_args.do_eval:
Julien Chaumond's avatar
Julien Chaumond committed
523
524
        logger.info("*** Evaluate ***")

525
526
        metrics = trainer.evaluate()

527
528
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
Julien Chaumond's avatar
Julien Chaumond committed
529

530
531
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
Julien Chaumond's avatar
Julien Chaumond committed
532
533

    # Predict
534
    if training_args.do_predict:
535
536
        logger.info("*** Predict ***")

537
        predictions, labels, metrics = trainer.predict(predict_dataset, metric_key_prefix="predict")
538
        predictions = np.argmax(predictions, axis=2)
Julien Chaumond's avatar
Julien Chaumond committed
539

540
541
542
543
544
        # Remove ignored index (special tokens)
        true_predictions = [
            [label_list[p] for (p, l) in zip(prediction, label) if l != -100]
            for prediction, label in zip(predictions, labels)
        ]
Julien Chaumond's avatar
Julien Chaumond committed
545

546
547
        trainer.log_metrics("predict", metrics)
        trainer.save_metrics("predict", metrics)
Julien Chaumond's avatar
Julien Chaumond committed
548

549
        # Save predictions
550
        output_predictions_file = os.path.join(training_args.output_dir, "predictions.txt")
551
        if trainer.is_world_process_zero():
552
            with open(output_predictions_file, "w") as writer:
553
554
                for prediction in true_predictions:
                    writer.write(" ".join(prediction) + "\n")
555

556
557
558
559
560
561
562
563
    kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "token-classification"}
    if data_args.dataset_name is not None:
        kwargs["dataset_tags"] = data_args.dataset_name
        if data_args.dataset_config_name is not None:
            kwargs["dataset_args"] = data_args.dataset_config_name
            kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
        else:
            kwargs["dataset"] = data_args.dataset_name
Sylvain Gugger's avatar
Sylvain Gugger committed
564

565
    if training_args.push_to_hub:
Sylvain Gugger's avatar
Sylvain Gugger committed
566
        trainer.push_to_hub(**kwargs)
567
568
    else:
        trainer.create_model_card(**kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
569

570

571
572
573
574
575
def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


576
577
if __name__ == "__main__":
    main()