run_swag.py 30.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
17
18
19
"""BERT finetuning runner.
   Finetuning the library models for multiple choice on SWAG (Bert).
"""
from __future__ import absolute_import, division, print_function
20
21

import argparse
22
import csv
Aymeric Augustin's avatar
Aymeric Augustin committed
23
24
import glob
import logging
25
26
27
28
29
30
import os
import random
import sys

import numpy as np
import torch
31
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
32
from torch.utils.data.distributed import DistributedSampler
Aymeric Augustin's avatar
Aymeric Augustin committed
33
34
35
36
37
38
39
40
41
42
43
from tqdm import tqdm, trange

from transformers import (
    WEIGHTS_NAME,
    AdamW,
    BertConfig,
    BertForMultipleChoice,
    BertTokenizer,
    get_linear_schedule_with_warmup,
)

44

45
46
try:
    from torch.utils.tensorboard import SummaryWriter
47
except ImportError:
48
49
    from tensorboardX import SummaryWriter

50
51
52

logger = logging.getLogger(__name__)

53
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) for conf in [BertConfig]), ())
54
55

MODEL_CLASSES = {
56
    "bert": (BertConfig, BertForMultipleChoice, BertTokenizer),
57
}
58

59

60
61
class SwagExample(object):
    """A single training/test example for the SWAG dataset."""
62
63

    def __init__(self, swag_id, context_sentence, start_ending, ending_0, ending_1, ending_2, ending_3, label=None):
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
        self.swag_id = swag_id
        self.context_sentence = context_sentence
        self.start_ending = start_ending
        self.endings = [
            ending_0,
            ending_1,
            ending_2,
            ending_3,
        ]
        self.label = label

    def __str__(self):
        return self.__repr__()

    def __repr__(self):
79
        attributes = [
80
81
82
83
84
85
86
87
88
89
            "swag_id: {}".format(self.swag_id),
            "context_sentence: {}".format(self.context_sentence),
            "start_ending: {}".format(self.start_ending),
            "ending_0: {}".format(self.endings[0]),
            "ending_1: {}".format(self.endings[1]),
            "ending_2: {}".format(self.endings[2]),
            "ending_3: {}".format(self.endings[3]),
        ]

        if self.label is not None:
90
            attributes.append("label: {}".format(self.label))
91

92
        return ", ".join(attributes)
93
94


95
96
class InputFeatures(object):
    def __init__(self, example_id, choices_features, label):
97
98
        self.example_id = example_id
        self.choices_features = [
99
            {"input_ids": input_ids, "input_mask": input_mask, "segment_ids": segment_ids}
100
101
102
103
            for _, input_ids, input_mask, segment_ids in choices_features
        ]
        self.label = label

104

105
def read_swag_examples(input_file, is_training=True):
106
    with open(input_file, "r", encoding="utf-8") as f:
107
108
109
110
        reader = csv.reader(f)
        lines = []
        for line in reader:
            if sys.version_info[0] == 2:
111
                line = list(unicode(cell, "utf-8") for cell in line)  # noqa: F821
112
113
            lines.append(line)

114
115
    if is_training and lines[0][-1] != "label":
        raise ValueError("For training, the input file must contain a label column.")
116
117
118

    examples = [
        SwagExample(
119
120
121
122
123
124
125
126
127
128
129
130
            swag_id=line[2],
            context_sentence=line[4],
            start_ending=line[5],  # in the swag dataset, the
            # common beginning of each
            # choice is stored in "sent2".
            ending_0=line[7],
            ending_1=line[8],
            ending_2=line[9],
            ending_3=line[10],
            label=int(line[11]) if is_training else None,
        )
        for line in lines[1:]  # we skip the line with the column names
131
132
133
134
    ]

    return examples

135
136

def convert_examples_to_features(examples, tokenizer, max_seq_length, is_training):
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
    """Loads a data file into a list of `InputBatch`s."""

    # Swag is a multiple choice task. To perform this task using Bert,
    # we will use the formatting proposed in "Improving Language
    # Understanding by Generative Pre-Training" and suggested by
    # @jacobdevlin-google in this issue
    # https://github.com/google-research/bert/issues/38.
    #
    # Each choice will correspond to a sample on which we run the
    # inference. For a given Swag example, we will create the 4
    # following inputs:
    # - [CLS] context [SEP] choice_1 [SEP]
    # - [CLS] context [SEP] choice_2 [SEP]
    # - [CLS] context [SEP] choice_3 [SEP]
    # - [CLS] context [SEP] choice_4 [SEP]
    # The model will output a single value for each input. To get the
    # final decision of the model, we will run a softmax over these 4
    # outputs.
    features = []
156
    for example_index, example in tqdm(enumerate(examples)):
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
        context_tokens = tokenizer.tokenize(example.context_sentence)
        start_ending_tokens = tokenizer.tokenize(example.start_ending)

        choices_features = []
        for ending_index, ending in enumerate(example.endings):
            # We create a copy of the context tokens in order to be
            # able to shrink it according to ending_tokens
            context_tokens_choice = context_tokens[:]
            ending_tokens = start_ending_tokens + tokenizer.tokenize(ending)
            # Modifies `context_tokens_choice` and `ending_tokens` in
            # place so that the total length is less than the
            # specified length.  Account for [CLS], [SEP], [SEP] with
            # "- 3"
            _truncate_seq_pair(context_tokens_choice, ending_tokens, max_seq_length - 3)

            tokens = ["[CLS]"] + context_tokens_choice + ["[SEP]"] + ending_tokens + ["[SEP]"]
            segment_ids = [0] * (len(context_tokens_choice) + 2) + [1] * (len(ending_tokens) + 1)

            input_ids = tokenizer.convert_tokens_to_ids(tokens)
            input_mask = [1] * len(input_ids)

            # Zero-pad up to the sequence length.
            padding = [0] * (max_seq_length - len(input_ids))
            input_ids += padding
            input_mask += padding
            segment_ids += padding

            assert len(input_ids) == max_seq_length
            assert len(input_mask) == max_seq_length
            assert len(segment_ids) == max_seq_length

            choices_features.append((tokens, input_ids, input_mask, segment_ids))

        label = example.label
        if example_index < 5:
            logger.info("*** Example ***")
            logger.info("swag_id: {}".format(example.swag_id))
            for choice_idx, (tokens, input_ids, input_mask, segment_ids) in enumerate(choices_features):
                logger.info("choice: {}".format(choice_idx))
196
197
198
199
                logger.info("tokens: {}".format(" ".join(tokens)))
                logger.info("input_ids: {}".format(" ".join(map(str, input_ids))))
                logger.info("input_mask: {}".format(" ".join(map(str, input_mask))))
                logger.info("segment_ids: {}".format(" ".join(map(str, segment_ids))))
200
201
202
            if is_training:
                logger.info("label: {}".format(label))

203
        features.append(InputFeatures(example_id=example.swag_id, choices_features=choices_features, label=label))
204
205
206

    return features

207

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
    """Truncates a sequence pair in place to the maximum length."""

    # This is a simple heuristic which will always truncate the longer sequence
    # one token at a time. This makes more sense than truncating an equal percent
    # of tokens from each, since if one sequence is very short then each token
    # that's truncated likely contains more information than a longer sequence.
    while True:
        total_length = len(tokens_a) + len(tokens_b)
        if total_length <= max_length:
            break
        if len(tokens_a) > len(tokens_b):
            tokens_a.pop()
        else:
            tokens_b.pop()

224

225
226
227
228
def accuracy(out, labels):
    outputs = np.argmax(out, axis=1)
    return np.sum(outputs == labels)

229

230
def select_field(features, field):
231
    return [[choice[field] for choice in feature.choices_features] for feature in features]
232

233
234
235
236
237
238
239
240

def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

241

242
243
244
245
246
247
def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False):
    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

    # Load data features from cache or dataset file
    input_file = args.predict_file if evaluate else args.train_file
248
249
250
251
252
253
254
255
    cached_features_file = os.path.join(
        os.path.dirname(input_file),
        "cached_{}_{}_{}".format(
            "dev" if evaluate else "train",
            list(filter(None, args.model_name_or_path.split("/"))).pop(),
            str(args.max_seq_length),
        ),
    )
256
257
258
259
260
261
    if os.path.exists(cached_features_file) and not args.overwrite_cache and not output_examples:
        logger.info("Loading features from cached file %s", cached_features_file)
        features = torch.load(cached_features_file)
    else:
        logger.info("Creating features from dataset file at %s", input_file)
        examples = read_swag_examples(input_file)
262
        features = convert_examples_to_features(examples, tokenizer, args.max_seq_length, not evaluate)
263
264
265
266
267
268
269
270
271

        if args.local_rank in [-1, 0]:
            logger.info("Saving features into cached file %s", cached_features_file)
            torch.save(features, cached_features_file)

    if args.local_rank == 0:
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

    # Convert to Tensors and build dataset
272
273
274
    all_input_ids = torch.tensor(select_field(features, "input_ids"), dtype=torch.long)
    all_input_mask = torch.tensor(select_field(features, "input_mask"), dtype=torch.long)
    all_segment_ids = torch.tensor(select_field(features, "segment_ids"), dtype=torch.long)
275
276
277
    all_label = torch.tensor([f.label for f in features], dtype=torch.long)

    if evaluate:
278
        dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label)
279
    else:
280
        dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label)
281
282
283
284

    if output_examples:
        return dataset, examples, features
    return dataset
285
286


287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
def train(args, train_dataset, model, tokenizer):
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)

    if args.max_steps > 0:
        t_total = args.max_steps
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs

    # Prepare optimizer and schedule (linear warmup and decay)
303
    no_decay = ["bias", "LayerNorm.weight"]
304
    optimizer_grouped_parameters = [
305
306
307
308
309
310
        {
            "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
            "weight_decay": args.weight_decay,
        },
        {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
    ]
311
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
312
313
314
    scheduler = get_linear_schedule_with_warmup(
        optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
    )
315
316
317
318
319
320
321
322
323
324
325
326
327
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)

    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
328
329
330
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
        )
331
332
333
334
335
336

    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
337
338
339
340
341
342
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size
        * args.gradient_accumulation_steps
        * (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
    )
343
344
345
346
347
348
349
350
351
352
353
354
355
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    global_step = 0
    tr_loss, logging_loss = 0.0, 0.0
    model.zero_grad()
    train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
    set_seed(args)  # Added here for reproductibility (even between python 2 and 3)
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
            model.train()
            batch = tuple(t.to(args.device) for t in batch)
356
357
358
            inputs = {
                "input_ids": batch[0],
                "attention_mask": batch[1],
359
                # 'token_type_ids':  None if args.model_type == 'xlm' else batch[2],
360
361
362
                "token_type_ids": batch[2],
                "labels": batch[3],
            }
363
364
365
366
            # if args.model_type in ['xlnet', 'xlm']:
            #     inputs.update({'cls_index': batch[5],
            #                    'p_mask':       batch[6]})
            outputs = model(**inputs)
367
            loss = outputs[0]  # model outputs are always tuple in transformers (see doc)
368
369

            if args.n_gpu > 1:
370
                loss = loss.mean()  # mean() to average on multi-gpu parallel (not distributed) training
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
                torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
            else:
                loss.backward()
                torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
                optimizer.step()
                scheduler.step()  # Update learning rate schedule
                model.zero_grad()
                global_step += 1

                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                    # Log metrics
391
392
393
                    if (
                        args.local_rank == -1 and args.evaluate_during_training
                    ):  # Only evaluate when single GPU otherwise metrics may not average well
394
395
                        results = evaluate(args, model, tokenizer)
                        for key, value in results.items():
396
397
398
                            tb_writer.add_scalar("eval_{}".format(key), value, global_step)
                    tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)
                    tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
399
400
401
402
                    logging_loss = tr_loss

                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    # Save model checkpoint
403
                    output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
404
405
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
406
407
408
                    model_to_save = (
                        model.module if hasattr(model, "module") else model
                    )  # Take care of distributed/parallel training
409
410
                    model_to_save.save_pretrained(output_dir)
                    tokenizer.save_vocabulary(output_dir)
411
                    torch.save(args, os.path.join(output_dir, "training_args.bin"))
412
413
414
415
416
417
418
419
420
421
422
423
424
425
                    logger.info("Saving model checkpoint to %s", output_dir)

            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

    if args.local_rank in [-1, 0]:
        tb_writer.close()

    return global_step, tr_loss / global_step

426

427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
def evaluate(args, model, tokenizer, prefix=""):
    dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=True, output_examples=True)

    if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
        os.makedirs(args.output_dir)

    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
    # Note that DistributedSampler samples randomly
    eval_sampler = SequentialSampler(dataset) if args.local_rank == -1 else DistributedSampler(dataset)
    eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)

    # Eval!
    logger.info("***** Running evaluation {} *****".format(prefix))
    logger.info("  Num examples = %d", len(dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)

    eval_loss, eval_accuracy = 0, 0
    nb_eval_steps, nb_eval_examples = 0, 0

    for batch in tqdm(eval_dataloader, desc="Evaluating"):
        model.eval()
        batch = tuple(t.to(args.device) for t in batch)
        with torch.no_grad():
450
451
452
453
454
455
456
            inputs = {
                "input_ids": batch[0],
                "attention_mask": batch[1],
                # 'token_type_ids': None if args.model_type == 'xlm' else batch[2]  # XLM don't use segment_ids
                "token_type_ids": batch[2],
                "labels": batch[3],
            }
457
458
459
460
461
462
463
464
465

            # if args.model_type in ['xlnet', 'xlm']:
            #     inputs.update({'cls_index': batch[4],
            #                    'p_mask':    batch[5]})
            outputs = model(**inputs)
            tmp_eval_loss, logits = outputs[:2]
            eval_loss += tmp_eval_loss.mean().item()

        logits = logits.detach().cpu().numpy()
466
        label_ids = inputs["labels"].to("cpu").numpy()
467
468
469
470
        tmp_eval_accuracy = accuracy(logits, label_ids)
        eval_accuracy += tmp_eval_accuracy

        nb_eval_steps += 1
471
        nb_eval_examples += inputs["input_ids"].size(0)
472
473
474

    eval_loss = eval_loss / nb_eval_steps
    eval_accuracy = eval_accuracy / nb_eval_examples
475
    result = {"eval_loss": eval_loss, "eval_accuracy": eval_accuracy}
476
477
478
479
480
481
482
483
484
485

    output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
    with open(output_eval_file, "w") as writer:
        logger.info("***** Eval results *****")
        for key in sorted(result.keys()):
            logger.info("%s = %s", key, str(result[key]))
            writer.write("%s = %s\n" % (key, str(result[key])))

    return result

486

487
488
489
def main():
    parser = argparse.ArgumentParser()

490
    # Required parameters
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
    parser.add_argument(
        "--train_file", default=None, type=str, required=True, help="SWAG csv for training. E.g., train.csv"
    )
    parser.add_argument(
        "--predict_file",
        default=None,
        type=str,
        required=True,
        help="SWAG csv for predictions. E.g., val.csv or test.csv",
    )
    parser.add_argument(
        "--model_type",
        default=None,
        type=str,
        required=True,
        help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()),
    )
    parser.add_argument(
        "--model_name_or_path",
        default=None,
        type=str,
        required=True,
        help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS),
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model checkpoints and predictions will be written.",
    )
522

523
    # Other parameters
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
    parser.add_argument(
        "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name"
    )
    parser.add_argument(
        "--tokenizer_name",
        default="",
        type=str,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--max_seq_length",
        default=384,
        type=int,
        help="The maximum total input sequence length after tokenization. Sequences "
        "longer than this will be truncated, and sequences shorter than this will be padded.",
    )
    parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
    parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--evaluate_during_training", action="store_true", help="Rul evaluation during training at each logging step."
    )
    parser.add_argument(
        "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model."
    )

    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.")
    parser.add_argument(
        "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation."
    )
    parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight deay if we apply some.")
    parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument(
        "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform."
    )
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
    )
    parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")

    parser.add_argument("--logging_steps", type=int, default=50, help="Log every X updates steps.")
    parser.add_argument("--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.")
    parser.add_argument(
        "--eval_all_checkpoints",
        action="store_true",
        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
    )
    parser.add_argument("--no_cuda", action="store_true", help="Whether not to use CUDA when available")
    parser.add_argument(
        "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory"
    )
    parser.add_argument(
        "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
    )
    parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")

    parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus")
    parser.add_argument(
        "--fp16",
        action="store_true",
        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
    )
    parser.add_argument(
        "--fp16_opt_level",
        type=str,
        default="O1",
        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html",
    )
    parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.")
    parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.")
605
606
    args = parser.parse_args()

607
608
609
610
611
612
613
614
615
616
617
    if (
        os.path.exists(args.output_dir)
        and os.listdir(args.output_dir)
        and args.do_train
        and not args.overwrite_output_dir
    ):
        raise ValueError(
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
                args.output_dir
            )
        )
618
619
620
621
622

    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
623

624
625
626
627
628
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
629
630
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
631
632
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
633
634
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
635
        torch.distributed.init_process_group(backend="nccl")
636
637
        args.n_gpu = 1
    args.device = device
638

639
    # Setup logging
640
641
642
643
644
645
646
647
648
649
650
651
652
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank,
        device,
        args.n_gpu,
        bool(args.local_rank != -1),
        args.fp16,
    )
653

654
655
    # Set seed
    set_seed(args)
656

657
658
659
    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
660

661
662
663
    args.model_type = args.model_type.lower()
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
    config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path)
664
665
666
667
668
669
    tokenizer = tokenizer_class.from_pretrained(
        args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case
    )
    model = model_class.from_pretrained(
        args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config
    )
670

671
672
    if args.local_rank == 0:
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
673

674
    model.to(args.device)
675

676
    logger.info("Training/evaluation parameters %s", args)
677

678
    # Training
679
    if args.do_train:
680
681
682
        train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False)
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
683

684
685
686
687
688
    # Save the trained model and the tokenizer
    if args.local_rank == -1 or torch.distributed.get_rank() == 0:
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)
689

690
691
692
        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
693
694
695
        model_to_save = (
            model.module if hasattr(model, "module") else model
        )  # Take care of distributed/parallel training
696
697
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)
698

699
        # Good practice: save your training arguments together with the trained model
700
        torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
701
702

        # Load a trained model and vocabulary that you have fine-tuned
703
704
705
        model = model_class.from_pretrained(args.output_dir)
        tokenizer = tokenizer_class.from_pretrained(args.output_dir)
        model.to(args.device)
706

707
708
709
710
711
712
713
714
715
716
    # Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
        if args.do_train:
            checkpoints = [args.output_dir]
        else:
            # if do_train is False and do_eval is true, load model directly from pretrained.
            checkpoints = [args.model_name_or_path]

        if args.eval_all_checkpoints:
717
718
719
            checkpoints = list(
                os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
            )
720
            logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce model loading logs
721
722
723
724
725

        logger.info("Evaluate the following checkpoints: %s", checkpoints)

        for checkpoint in checkpoints:
            # Reload the model
726
            global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
727
728
729
            model = model_class.from_pretrained(checkpoint)
            tokenizer = tokenizer_class.from_pretrained(checkpoint)
            model.to(args.device)
730

731
732
            # Evaluate
            result = evaluate(args, model, tokenizer, prefix=global_step)
733

734
            result = dict((k + ("_{}".format(global_step) if global_step else ""), v) for k, v in result.items())
735
            results.update(result)
736

737
    logger.info("Results: {}".format(results))
738

739
    return results
740
741
742
743


if __name__ == "__main__":
    main()