"test/git@developer.sourcefind.cn:zhaoyu6/sglang.git" did not exist on "04d0123fd9361c8899bf6576b59eb2152669e94c"
modeling.py 20.6 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
thomwolf's avatar
thomwolf committed
15
"""PyTorch BERT model."""
thomwolf's avatar
thomwolf committed
16
17
18
19
20
21
22
23
24
25
26

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import copy
import json
import math
import six
import torch
import torch.nn as nn
27
from torch.nn import CrossEntropyLoss
thomwolf's avatar
thomwolf committed
28

thomwolf's avatar
thomwolf committed
29
def gelu(x):
thomwolf's avatar
thomwolf committed
30
31
32
33
    """Implementation of the gelu activation function.
        For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
        0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
    """
thomwolf's avatar
thomwolf committed
34
    return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
thomwolf's avatar
thomwolf committed
35

thomwolf's avatar
thomwolf committed
36

lukovnikov's avatar
lukovnikov committed
37
38
39
40
def swish(x):
    return x * torch.sigmoid(x)


thomwolf's avatar
thomwolf committed
41
class BertConfig(object):
thomwolf's avatar
thomwolf committed
42
43
    """Configuration class to store the configuration of a `BertModel`.
    """
thomwolf's avatar
thomwolf committed
44
    def __init__(self,
thomwolf's avatar
thomwolf committed
45
46
47
48
49
50
51
52
53
54
55
                vocab_size,
                hidden_size=768,
                num_hidden_layers=12,
                num_attention_heads=12,
                intermediate_size=3072,
                hidden_act="gelu",
                hidden_dropout_prob=0.1,
                attention_probs_dropout_prob=0.1,
                max_position_embeddings=512,
                type_vocab_size=16,
                initializer_range=0.02):
thomwolf's avatar
thomwolf committed
56
57
58
59
60
61
62
63
64
65
66
        """Constructs BertConfig.

        Args:
            vocab_size: Vocabulary size of `inputs_ids` in `BertModel`.
            hidden_size: Size of the encoder layers and the pooler layer.
            num_hidden_layers: Number of hidden layers in the Transformer encoder.
            num_attention_heads: Number of attention heads for each attention layer in
                the Transformer encoder.
            intermediate_size: The size of the "intermediate" (i.e., feed-forward)
                layer in the Transformer encoder.
            hidden_act: The non-linear activation function (function or string) in the
lukovnikov's avatar
lukovnikov committed
67
                encoder and pooler. If string, "gelu", "relu" and "swish" supported.
thomwolf's avatar
thomwolf committed
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
            hidden_dropout_prob: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            attention_probs_dropout_prob: The dropout ratio for the attention
                probabilities.
            max_position_embeddings: The maximum sequence length that this model might
                ever be used with. Typically set this to something large just in case
                (e.g., 512 or 1024 or 2048).
            type_vocab_size: The vocabulary size of the `token_type_ids` passed into
                `BertModel`.
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
        """
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.hidden_act = hidden_act
        self.intermediate_size = intermediate_size
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.initializer_range = initializer_range

    @classmethod
    def from_dict(cls, json_object):
        """Constructs a `BertConfig` from a Python dictionary of parameters."""
        config = BertConfig(vocab_size=None)
        for (key, value) in six.iteritems(json_object):
            config.__dict__[key] = value
        return config

    @classmethod
    def from_json_file(cls, json_file):
        """Constructs a `BertConfig` from a json file of parameters."""
        with open(json_file, "r") as reader:
            text = reader.read()
        return cls.from_dict(json.loads(text))

    def to_dict(self):
        """Serializes this instance to a Python dictionary."""
        output = copy.deepcopy(self.__dict__)
        return output

    def to_json_string(self):
        """Serializes this instance to a JSON string."""
        return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"


thomwolf's avatar
thomwolf committed
117
class BERTLayerNorm(nn.Module):
thomwolf's avatar
thomwolf committed
118
    def __init__(self, config, variance_epsilon=1e-12):
thomwolf's avatar
thomwolf committed
119
120
        """Construct a layernorm module in the TF style (epsilon inside the square root).
        """
thomwolf's avatar
thomwolf committed
121
122
123
124
125
126
127
128
129
130
        super(BERTLayerNorm, self).__init__()
        self.gamma = nn.Parameter(torch.ones(config.hidden_size))
        self.beta = nn.Parameter(torch.zeros(config.hidden_size))
        self.variance_epsilon = variance_epsilon

    def forward(self, x):
        u = x.mean(-1, keepdim=True)
        s = (x - u).pow(2).mean(-1, keepdim=True)
        x = (x - u) / torch.sqrt(s + self.variance_epsilon)
        return self.gamma * x + self.beta
thomwolf's avatar
thomwolf committed
131

thomwolf's avatar
thomwolf committed
132
class BERTEmbeddings(nn.Module):
thomwolf's avatar
thomwolf committed
133
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
134
        super(BERTEmbeddings, self).__init__()
thomwolf's avatar
thomwolf committed
135
136
        """Construct the embedding module from word, position and token_type embeddings.
        """
thomwolf's avatar
thomwolf committed
137
138
139
        self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
thomwolf's avatar
thomwolf committed
140

thomwolf's avatar
thomwolf committed
141
142
143
        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
        self.LayerNorm = BERTLayerNorm(config)
thomwolf's avatar
thomwolf committed
144
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
thomwolf's avatar
thomwolf committed
145
146
147

    def forward(self, input_ids, token_type_ids=None):
        seq_length = input_ids.size(1)
148
149
        position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
        position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
thomwolf's avatar
thomwolf committed
150
        if token_type_ids is None:
151
            token_type_ids = torch.zeros_like(input_ids)
thomwolf's avatar
thomwolf committed
152
153
154
155

        words_embeddings = self.word_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)
thomwolf's avatar
thomwolf committed
156

thomwolf's avatar
thomwolf committed
157
158
159
160
161
162
163
164
165
166
167
168
169
        embeddings = words_embeddings + position_embeddings + token_type_embeddings
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings


class BERTSelfAttention(nn.Module):
    def __init__(self, config):
        super(BERTSelfAttention, self).__init__()
        if config.hidden_size % config.num_attention_heads != 0:
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
                "heads (%d)" % (config.hidden_size, config.num_attention_heads))
thomwolf's avatar
thomwolf committed
170
171
172
        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size
thomwolf's avatar
thomwolf committed
173

thomwolf's avatar
thomwolf committed
174
175
176
        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)
thomwolf's avatar
thomwolf committed
177

thomwolf's avatar
thomwolf committed
178
179
        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)

thomwolf's avatar
thomwolf committed
180
    def transpose_for_scores(self, x):
thomwolf's avatar
thomwolf committed
181
182
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(*new_x_shape)
thomwolf's avatar
thomwolf committed
183
        return x.permute(0, 2, 1, 3)
thomwolf's avatar
thomwolf committed
184

thomwolf's avatar
thomwolf committed
185
    def forward(self, hidden_states, attention_mask):
thomwolf's avatar
thomwolf committed
186
187
188
        mixed_query_layer = self.query(hidden_states)
        mixed_key_layer = self.key(hidden_states)
        mixed_value_layer = self.value(hidden_states)
thomwolf's avatar
thomwolf committed
189

thomwolf's avatar
thomwolf committed
190
        query_layer = self.transpose_for_scores(mixed_query_layer)
thomwolf's avatar
thomwolf committed
191
        key_layer = self.transpose_for_scores(mixed_key_layer)
thomwolf's avatar
thomwolf committed
192
        value_layer = self.transpose_for_scores(mixed_value_layer)
thomwolf's avatar
thomwolf committed
193

thomwolf's avatar
thomwolf committed
194
195
196
197
198
        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
        attention_scores = attention_scores + attention_mask
thomwolf's avatar
thomwolf committed
199
200

        # Normalize the attention scores to probabilities.
thomwolf's avatar
thomwolf committed
201
        attention_probs = nn.Softmax(dim=-1)(attention_scores)
thomwolf's avatar
thomwolf committed
202
203
204

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
thomwolf's avatar
thomwolf committed
205
        attention_probs = self.dropout(attention_probs)
thomwolf's avatar
thomwolf committed
206
207
208
209

        context_layer = torch.matmul(attention_probs, value_layer)
        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
thomwolf's avatar
thomwolf committed
210
        context_layer = context_layer.view(*new_context_layer_shape)
thomwolf's avatar
thomwolf committed
211
212
213
214
215
216
217
218
219
220
221
        return context_layer


class BERTSelfOutput(nn.Module):
    def __init__(self, config):
        super(BERTSelfOutput, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.LayerNorm = BERTLayerNorm(config)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
thomwolf's avatar
thomwolf committed
222
        hidden_states = self.dense(hidden_states)
thomwolf's avatar
thomwolf committed
223
224
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
thomwolf's avatar
thomwolf committed
225
226
227
228
229
230
231
        return hidden_states


class BERTAttention(nn.Module):
    def __init__(self, config):
        super(BERTAttention, self).__init__()
        self.self = BERTSelfAttention(config)
thomwolf's avatar
thomwolf committed
232
233
234
        self.output = BERTSelfOutput(config)

    def forward(self, input_tensor, attention_mask):
thomwolf's avatar
thomwolf committed
235
236
        self_output = self.self(input_tensor, attention_mask)
        attention_output = self.output(self_output, input_tensor)
thomwolf's avatar
thomwolf committed
237
238
239
240
241
        return attention_output


class BERTIntermediate(nn.Module):
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
242
        super(BERTIntermediate, self).__init__()
thomwolf's avatar
thomwolf committed
243
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
lukovnikov's avatar
lukovnikov committed
244
245
        act2fn = {"gelu": gelu, "relu": torch.nn.ReLU, "swish": swish}
        self.intermediate_act_fn = act2fn[config.hidden_act] if isinstance(config.hidden_act, str) else config.hidden_act
thomwolf's avatar
thomwolf committed
246
247

    def forward(self, hidden_states):
thomwolf's avatar
thomwolf committed
248
249
250
251
252
253
254
255
256
257
258
259
260
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states


class BERTOutput(nn.Module):
    def __init__(self, config):
        super(BERTOutput, self).__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
        self.LayerNorm = BERTLayerNorm(config)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
261
        hidden_states = self.dense(hidden_states)
thomwolf's avatar
thomwolf committed
262
263
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
thomwolf's avatar
thomwolf committed
264
265
266
267
268
269
270
271
272
273
        return hidden_states


class BERTLayer(nn.Module):
    def __init__(self, config):
        super(BERTLayer, self).__init__()
        self.attention = BERTAttention(config)
        self.intermediate = BERTIntermediate(config)
        self.output = BERTOutput(config)

thomwolf's avatar
thomwolf committed
274
275
276
277
    def forward(self, hidden_states, attention_mask):
        attention_output = self.attention(hidden_states, attention_mask)
        intermediate_output = self.intermediate(attention_output)
        layer_output = self.output(intermediate_output, attention_output)
thomwolf's avatar
thomwolf committed
278
        return layer_output
thomwolf's avatar
thomwolf committed
279
280
281
282
283


class BERTEncoder(nn.Module):
    def __init__(self, config):
        super(BERTEncoder, self).__init__()
thomwolf's avatar
thomwolf committed
284
        layer = BERTLayer(config)
thomwolf's avatar
thomwolf committed
285
286
        self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_hidden_layers)])    

thomwolf's avatar
thomwolf committed
287
    def forward(self, hidden_states, attention_mask):
thomwolf's avatar
thomwolf committed
288
        all_encoder_layers = []
thomwolf's avatar
thomwolf committed
289
290
        for layer_module in self.layer:
            hidden_states = layer_module(hidden_states, attention_mask)
thomwolf's avatar
thomwolf committed
291
292
            all_encoder_layers.append(hidden_states)
        return all_encoder_layers
thomwolf's avatar
thomwolf committed
293
294
295
296
297


class BERTPooler(nn.Module):
    def __init__(self, config):
        super(BERTPooler, self).__init__()
thomwolf's avatar
thomwolf committed
298
299
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.activation = nn.Tanh()
thomwolf's avatar
thomwolf committed
300

thomwolf's avatar
thomwolf committed
301
302
    def forward(self, hidden_states):
        # We "pool" the model by simply taking the hidden state corresponding
thomwolf's avatar
thomwolf committed
303
        # to the first token.
thomwolf's avatar
thomwolf committed
304
305
306
307
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output
thomwolf's avatar
thomwolf committed
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322


class BertModel(nn.Module):
    """BERT model ("Bidirectional Embedding Representations from a Transformer").

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 2, 0]])

    config = modeling.BertConfig(vocab_size=32000, hidden_size=512,
        num_hidden_layers=8, num_attention_heads=6, intermediate_size=1024)

thomwolf's avatar
thomwolf committed
323
324
    model = modeling.BertModel(config=config)
    all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
thomwolf's avatar
thomwolf committed
325
326
    ```
    """
thomwolf's avatar
thomwolf committed
327
    def __init__(self, config: BertConfig):
thomwolf's avatar
thomwolf committed
328
329
330
331
332
        """Constructor for BertModel.

        Args:
            config: `BertConfig` instance.
        """
thomwolf's avatar
thomwolf committed
333
        super(BertModel, self).__init__()
thomwolf's avatar
thomwolf committed
334
335
        self.embeddings = BERTEmbeddings(config)
        self.encoder = BERTEncoder(config)
thomwolf's avatar
thomwolf committed
336
        self.pooler = BERTPooler(config)
thomwolf's avatar
thomwolf committed
337

thomwolf's avatar
thomwolf committed
338
339
340
341
342
343
    def forward(self, input_ids, token_type_ids=None, attention_mask=None):
        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids)
        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)

thomwolf's avatar
thomwolf committed
344
        # We create a 3D attention mask from a 2D tensor mask.
thomwolf's avatar
thomwolf committed
345
346
        # Sizes are [batch_size, 1, 1, to_seq_length]
        # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
thomwolf's avatar
thomwolf committed
347
348
        # this attention mask is more simple than the triangular masking of causal attention
        # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
thomwolf's avatar
thomwolf committed
349
        extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
thomwolf's avatar
thomwolf committed
350
351
352
353
354
355

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
thomwolf's avatar
thomwolf committed
356
        extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
thomwolf's avatar
thomwolf committed
357
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
358

thomwolf's avatar
thomwolf committed
359
        embedding_output = self.embeddings(input_ids, token_type_ids)
thomwolf's avatar
thomwolf committed
360
        all_encoder_layers = self.encoder(embedding_output, extended_attention_mask)
thomwolf's avatar
thomwolf committed
361
362
        sequence_output = all_encoder_layers[-1]
        pooled_output = self.pooler(sequence_output)
lukovnikov's avatar
lukovnikov committed
363
        return all_encoder_layers, pooled_output
364
365

class BertForSequenceClassification(nn.Module):
thomwolf's avatar
thomwolf committed
366
367
368
369
370
371
372
373
374
375
376
    """BERT model for classification.
    This module is composed of the BERT model with a linear layer on top of
    the pooled output.

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 2, 0]])

377
    config = BertConfig(vocab_size=32000, hidden_size=512,
thomwolf's avatar
thomwolf committed
378
379
380
381
        num_hidden_layers=8, num_attention_heads=6, intermediate_size=1024)

    num_labels = 2

382
    model = BertForSequenceClassification(config, num_labels)
thomwolf's avatar
thomwolf committed
383
384
    logits = model(input_ids, token_type_ids, input_mask)
    ```
thomwolf's avatar
thomwolf committed
385
386
    """
    def __init__(self, config, num_labels):
387
388
389
390
391
        super(BertForSequenceClassification, self).__init__()
        self.bert = BertModel(config)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, num_labels)

392
393
        def init_weights(module):
            if isinstance(module, (nn.Linear, nn.Embedding)):
thomwolf's avatar
thomwolf committed
394
                # Slightly different from the TF version which uses truncated_normal for initialization
395
                # cf https://github.com/pytorch/pytorch/pull/5617
396
                module.weight.data.normal_(mean=0.0, std=config.initializer_range)
397
            elif isinstance(module, BERTLayerNorm):
398
399
                module.beta.data.normal_(mean=0.0, std=config.initializer_range)
                module.gamma.data.normal_(mean=0.0, std=config.initializer_range)
400
401
            if isinstance(module, nn.Linear):
                module.bias.data.zero_()
402
403
404
405
406
407
408
409
410
411
412
413
414
        self.apply(init_weights)

    def forward(self, input_ids, token_type_ids, attention_mask, labels=None):
        _, pooled_output = self.bert(input_ids, token_type_ids, attention_mask)
        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)

        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(logits, labels)
            return loss, logits
        else:
            return logits
415
416
417

class BertForQuestionAnswering(nn.Module):
    """BERT model for Question Answering (span extraction).
thomwolf's avatar
thomwolf committed
418
419
    This module is composed of the BERT model with a linear layer on top of
    the sequence output that computes start_logits and end_logits
420
421
422
423
424
425
426
427
428
429
430
431

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 2, 0]])

    config = BertConfig(vocab_size=32000, hidden_size=512,
        num_hidden_layers=8, num_attention_heads=6, intermediate_size=1024)

    model = BertForQuestionAnswering(config)
thomwolf's avatar
thomwolf committed
432
    start_logits, end_logits = model(input_ids, token_type_ids, input_mask)
433
434
435
436
437
    ```
    """
    def __init__(self, config):
        super(BertForQuestionAnswering, self).__init__()
        self.bert = BertModel(config)
thomwolf's avatar
thomwolf committed
438
        # TODO check with Google if it's normal there is no dropout on the token classifier of SQuAD in the TF version
439
440
441
        # self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.qa_outputs = nn.Linear(config.hidden_size, 2)

442
443
        def init_weights(module):
            if isinstance(module, (nn.Linear, nn.Embedding)):
thomwolf's avatar
thomwolf committed
444
                # Slightly different from the TF version which uses truncated_normal for initialization
445
                # cf https://github.com/pytorch/pytorch/pull/5617
446
                module.weight.data.normal_(mean=0.0, std=config.initializer_range)
447
            elif isinstance(module, BERTLayerNorm):
448
449
                module.beta.data.normal_(mean=0.0, std=config.initializer_range)
                module.gamma.data.normal_(mean=0.0, std=config.initializer_range)
450
451
            if isinstance(module, nn.Linear):
                module.bias.data.zero_()
452
453
454
455
456
457
458
        self.apply(init_weights)

    def forward(self, input_ids, token_type_ids, attention_mask, start_positions=None, end_positions=None):
        all_encoder_layers, _ = self.bert(input_ids, token_type_ids, attention_mask)
        sequence_output = all_encoder_layers[-1]
        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, dim=-1)
459
460
        start_logits = start_logits.squeeze(-1)
        end_logits = end_logits.squeeze(-1)
461
462

        if start_positions is not None and end_positions is not None:
463
464
465
466
467
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
468
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
469
            ignored_index = start_logits.size(1)
470
471
472
473
            start_positions.clamp_(0, ignored_index)
            end_positions.clamp_(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
474
475
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
476
            total_loss = (start_loss + end_loss) / 2
477
            return total_loss
478
479
        else:
            return start_logits, end_logits