modeling.py 20.3 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
thomwolf's avatar
thomwolf committed
15
"""PyTorch BERT model."""
thomwolf's avatar
thomwolf committed
16
17
18
19
20
21
22
23
24
25
26

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import copy
import json
import math
import six
import torch
import torch.nn as nn
27
from torch.nn import CrossEntropyLoss
thomwolf's avatar
thomwolf committed
28

thomwolf's avatar
thomwolf committed
29
def gelu(x):
thomwolf's avatar
thomwolf committed
30
31
32
33
    """Implementation of the gelu activation function.
        For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
        0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
    """
thomwolf's avatar
thomwolf committed
34
    return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
thomwolf's avatar
thomwolf committed
35

thomwolf's avatar
thomwolf committed
36
37

class BertConfig(object):
thomwolf's avatar
thomwolf committed
38
39
    """Configuration class to store the configuration of a `BertModel`.
    """
thomwolf's avatar
thomwolf committed
40
    def __init__(self,
thomwolf's avatar
thomwolf committed
41
42
43
44
45
46
47
48
49
50
51
                vocab_size,
                hidden_size=768,
                num_hidden_layers=12,
                num_attention_heads=12,
                intermediate_size=3072,
                hidden_act="gelu",
                hidden_dropout_prob=0.1,
                attention_probs_dropout_prob=0.1,
                max_position_embeddings=512,
                type_vocab_size=16,
                initializer_range=0.02):
thomwolf's avatar
thomwolf committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
        """Constructs BertConfig.

        Args:
            vocab_size: Vocabulary size of `inputs_ids` in `BertModel`.
            hidden_size: Size of the encoder layers and the pooler layer.
            num_hidden_layers: Number of hidden layers in the Transformer encoder.
            num_attention_heads: Number of attention heads for each attention layer in
                the Transformer encoder.
            intermediate_size: The size of the "intermediate" (i.e., feed-forward)
                layer in the Transformer encoder.
            hidden_act: The non-linear activation function (function or string) in the
                encoder and pooler.
            hidden_dropout_prob: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            attention_probs_dropout_prob: The dropout ratio for the attention
                probabilities.
            max_position_embeddings: The maximum sequence length that this model might
                ever be used with. Typically set this to something large just in case
                (e.g., 512 or 1024 or 2048).
            type_vocab_size: The vocabulary size of the `token_type_ids` passed into
                `BertModel`.
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
        """
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.hidden_act = hidden_act
        self.intermediate_size = intermediate_size
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.initializer_range = initializer_range

    @classmethod
    def from_dict(cls, json_object):
        """Constructs a `BertConfig` from a Python dictionary of parameters."""
        config = BertConfig(vocab_size=None)
        for (key, value) in six.iteritems(json_object):
            config.__dict__[key] = value
        return config

    @classmethod
    def from_json_file(cls, json_file):
        """Constructs a `BertConfig` from a json file of parameters."""
        with open(json_file, "r") as reader:
            text = reader.read()
        return cls.from_dict(json.loads(text))

    def to_dict(self):
        """Serializes this instance to a Python dictionary."""
        output = copy.deepcopy(self.__dict__)
        return output

    def to_json_string(self):
        """Serializes this instance to a JSON string."""
        return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"


thomwolf's avatar
thomwolf committed
113
class BERTLayerNorm(nn.Module):
thomwolf's avatar
thomwolf committed
114
    def __init__(self, config, variance_epsilon=1e-12):
thomwolf's avatar
thomwolf committed
115
116
        """Construct a layernorm module in the TF style (epsilon inside the square root).
        """
thomwolf's avatar
thomwolf committed
117
118
119
120
121
122
123
124
125
126
        super(BERTLayerNorm, self).__init__()
        self.gamma = nn.Parameter(torch.ones(config.hidden_size))
        self.beta = nn.Parameter(torch.zeros(config.hidden_size))
        self.variance_epsilon = variance_epsilon

    def forward(self, x):
        u = x.mean(-1, keepdim=True)
        s = (x - u).pow(2).mean(-1, keepdim=True)
        x = (x - u) / torch.sqrt(s + self.variance_epsilon)
        return self.gamma * x + self.beta
thomwolf's avatar
thomwolf committed
127

thomwolf's avatar
thomwolf committed
128
class BERTEmbeddings(nn.Module):
thomwolf's avatar
thomwolf committed
129
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
130
        super(BERTEmbeddings, self).__init__()
thomwolf's avatar
thomwolf committed
131
132
        """Construct the embedding module from word, position and token_type embeddings.
        """
thomwolf's avatar
thomwolf committed
133
134
135
        self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
thomwolf's avatar
thomwolf committed
136

thomwolf's avatar
thomwolf committed
137
138
139
        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
        self.LayerNorm = BERTLayerNorm(config)
thomwolf's avatar
thomwolf committed
140
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
thomwolf's avatar
thomwolf committed
141
142
143

    def forward(self, input_ids, token_type_ids=None):
        seq_length = input_ids.size(1)
144
145
        position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
        position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
thomwolf's avatar
thomwolf committed
146
        if token_type_ids is None:
147
            token_type_ids = torch.zeros_like(input_ids)
thomwolf's avatar
thomwolf committed
148
149
150
151

        words_embeddings = self.word_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)
thomwolf's avatar
thomwolf committed
152

thomwolf's avatar
thomwolf committed
153
154
155
156
157
158
159
160
161
162
163
164
165
        embeddings = words_embeddings + position_embeddings + token_type_embeddings
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings


class BERTSelfAttention(nn.Module):
    def __init__(self, config):
        super(BERTSelfAttention, self).__init__()
        if config.hidden_size % config.num_attention_heads != 0:
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
                "heads (%d)" % (config.hidden_size, config.num_attention_heads))
thomwolf's avatar
thomwolf committed
166
167
168
        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size
thomwolf's avatar
thomwolf committed
169

thomwolf's avatar
thomwolf committed
170
171
172
        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)
thomwolf's avatar
thomwolf committed
173

thomwolf's avatar
thomwolf committed
174
175
        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)

thomwolf's avatar
thomwolf committed
176
    def transpose_for_scores(self, x):
thomwolf's avatar
thomwolf committed
177
178
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(*new_x_shape)
thomwolf's avatar
thomwolf committed
179
        return x.permute(0, 2, 1, 3)
thomwolf's avatar
thomwolf committed
180

thomwolf's avatar
thomwolf committed
181
    def forward(self, hidden_states, attention_mask):
thomwolf's avatar
thomwolf committed
182
183
184
        mixed_query_layer = self.query(hidden_states)
        mixed_key_layer = self.key(hidden_states)
        mixed_value_layer = self.value(hidden_states)
thomwolf's avatar
thomwolf committed
185

thomwolf's avatar
thomwolf committed
186
        query_layer = self.transpose_for_scores(mixed_query_layer)
thomwolf's avatar
thomwolf committed
187
        key_layer = self.transpose_for_scores(mixed_key_layer)
thomwolf's avatar
thomwolf committed
188
        value_layer = self.transpose_for_scores(mixed_value_layer)
thomwolf's avatar
thomwolf committed
189

thomwolf's avatar
thomwolf committed
190
191
192
193
194
        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
        attention_scores = attention_scores + attention_mask
thomwolf's avatar
thomwolf committed
195
196

        # Normalize the attention scores to probabilities.
thomwolf's avatar
thomwolf committed
197
        attention_probs = nn.Softmax(dim=-1)(attention_scores)
thomwolf's avatar
thomwolf committed
198
199
200

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
thomwolf's avatar
thomwolf committed
201
        attention_probs = self.dropout(attention_probs)
thomwolf's avatar
thomwolf committed
202
203
204
205

        context_layer = torch.matmul(attention_probs, value_layer)
        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
thomwolf's avatar
thomwolf committed
206
        context_layer = context_layer.view(*new_context_layer_shape)
thomwolf's avatar
thomwolf committed
207
208
209
210
211
212
213
214
215
216
217
        return context_layer


class BERTSelfOutput(nn.Module):
    def __init__(self, config):
        super(BERTSelfOutput, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.LayerNorm = BERTLayerNorm(config)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
thomwolf's avatar
thomwolf committed
218
        hidden_states = self.dense(hidden_states)
thomwolf's avatar
thomwolf committed
219
220
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
thomwolf's avatar
thomwolf committed
221
222
223
224
225
226
227
        return hidden_states


class BERTAttention(nn.Module):
    def __init__(self, config):
        super(BERTAttention, self).__init__()
        self.self = BERTSelfAttention(config)
thomwolf's avatar
thomwolf committed
228
229
230
        self.output = BERTSelfOutput(config)

    def forward(self, input_tensor, attention_mask):
thomwolf's avatar
thomwolf committed
231
232
        self_output = self.self(input_tensor, attention_mask)
        attention_output = self.output(self_output, input_tensor)
thomwolf's avatar
thomwolf committed
233
234
235
236
237
        return attention_output


class BERTIntermediate(nn.Module):
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
238
        super(BERTIntermediate, self).__init__()
thomwolf's avatar
thomwolf committed
239
240
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
        self.intermediate_act_fn = gelu
thomwolf's avatar
thomwolf committed
241
242

    def forward(self, hidden_states):
thomwolf's avatar
thomwolf committed
243
244
245
246
247
248
249
250
251
252
253
254
255
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states


class BERTOutput(nn.Module):
    def __init__(self, config):
        super(BERTOutput, self).__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
        self.LayerNorm = BERTLayerNorm(config)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
256
        hidden_states = self.dense(hidden_states)
thomwolf's avatar
thomwolf committed
257
258
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
thomwolf's avatar
thomwolf committed
259
260
261
262
263
264
265
266
267
268
        return hidden_states


class BERTLayer(nn.Module):
    def __init__(self, config):
        super(BERTLayer, self).__init__()
        self.attention = BERTAttention(config)
        self.intermediate = BERTIntermediate(config)
        self.output = BERTOutput(config)

thomwolf's avatar
thomwolf committed
269
270
271
272
    def forward(self, hidden_states, attention_mask):
        attention_output = self.attention(hidden_states, attention_mask)
        intermediate_output = self.intermediate(attention_output)
        layer_output = self.output(intermediate_output, attention_output)
thomwolf's avatar
thomwolf committed
273
        return layer_output
thomwolf's avatar
thomwolf committed
274
275
276
277
278


class BERTEncoder(nn.Module):
    def __init__(self, config):
        super(BERTEncoder, self).__init__()
thomwolf's avatar
thomwolf committed
279
        layer = BERTLayer(config)
thomwolf's avatar
thomwolf committed
280
281
        self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_hidden_layers)])    

thomwolf's avatar
thomwolf committed
282
    def forward(self, hidden_states, attention_mask):
thomwolf's avatar
thomwolf committed
283
        all_encoder_layers = []
thomwolf's avatar
thomwolf committed
284
285
        for layer_module in self.layer:
            hidden_states = layer_module(hidden_states, attention_mask)
thomwolf's avatar
thomwolf committed
286
287
            all_encoder_layers.append(hidden_states)
        return all_encoder_layers
thomwolf's avatar
thomwolf committed
288
289
290
291
292


class BERTPooler(nn.Module):
    def __init__(self, config):
        super(BERTPooler, self).__init__()
thomwolf's avatar
thomwolf committed
293
294
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.activation = nn.Tanh()
thomwolf's avatar
thomwolf committed
295

thomwolf's avatar
thomwolf committed
296
297
    def forward(self, hidden_states):
        # We "pool" the model by simply taking the hidden state corresponding
thomwolf's avatar
thomwolf committed
298
        # to the first token.
thomwolf's avatar
thomwolf committed
299
300
301
302
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output
thomwolf's avatar
thomwolf committed
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317


class BertModel(nn.Module):
    """BERT model ("Bidirectional Embedding Representations from a Transformer").

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 2, 0]])

    config = modeling.BertConfig(vocab_size=32000, hidden_size=512,
        num_hidden_layers=8, num_attention_heads=6, intermediate_size=1024)

thomwolf's avatar
thomwolf committed
318
319
    model = modeling.BertModel(config=config)
    all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
thomwolf's avatar
thomwolf committed
320
321
    ```
    """
thomwolf's avatar
thomwolf committed
322
    def __init__(self, config: BertConfig):
thomwolf's avatar
thomwolf committed
323
324
325
326
327
        """Constructor for BertModel.

        Args:
            config: `BertConfig` instance.
        """
thomwolf's avatar
thomwolf committed
328
        super(BertModel, self).__init__()
thomwolf's avatar
thomwolf committed
329
330
        self.embeddings = BERTEmbeddings(config)
        self.encoder = BERTEncoder(config)
thomwolf's avatar
thomwolf committed
331
        self.pooler = BERTPooler(config)
thomwolf's avatar
thomwolf committed
332

thomwolf's avatar
thomwolf committed
333
334
335
336
337
338
    def forward(self, input_ids, token_type_ids=None, attention_mask=None):
        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids)
        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)

thomwolf's avatar
thomwolf committed
339
        # We create a 3D attention mask from a 2D tensor mask.
thomwolf's avatar
thomwolf committed
340
341
        # Sizes are [batch_size, 1, 1, to_seq_length]
        # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
thomwolf's avatar
thomwolf committed
342
343
        # this attention mask is more simple than the triangular masking of causal attention
        # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
thomwolf's avatar
thomwolf committed
344
        extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
thomwolf's avatar
thomwolf committed
345
346
347
348
349
350
351

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
        extended_attention_mask = extended_attention_mask.float()
thomwolf's avatar
thomwolf committed
352
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
353

thomwolf's avatar
thomwolf committed
354
        embedding_output = self.embeddings(input_ids, token_type_ids)
thomwolf's avatar
thomwolf committed
355
        all_encoder_layers = self.encoder(embedding_output, extended_attention_mask)
thomwolf's avatar
thomwolf committed
356
357
358
        sequence_output = all_encoder_layers[-1]
        pooled_output = self.pooler(sequence_output)
        return all_encoder_layers, pooled_output
359
360

class BertForSequenceClassification(nn.Module):
thomwolf's avatar
thomwolf committed
361
362
363
364
365
366
367
368
369
370
371
    """BERT model for classification.
    This module is composed of the BERT model with a linear layer on top of
    the pooled output.

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 2, 0]])

372
    config = BertConfig(vocab_size=32000, hidden_size=512,
thomwolf's avatar
thomwolf committed
373
374
375
376
        num_hidden_layers=8, num_attention_heads=6, intermediate_size=1024)

    num_labels = 2

377
    model = BertForSequenceClassification(config, num_labels)
thomwolf's avatar
thomwolf committed
378
379
    logits = model(input_ids, token_type_ids, input_mask)
    ```
thomwolf's avatar
thomwolf committed
380
381
    """
    def __init__(self, config, num_labels):
382
383
384
385
386
        super(BertForSequenceClassification, self).__init__()
        self.bert = BertModel(config)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, num_labels)

387
388
        def init_weights(module):
            if isinstance(module, (nn.Linear, nn.Embedding)):
thomwolf's avatar
thomwolf committed
389
                # Slightly different from the TF version which uses truncated_normal for initialization
390
                # cf https://github.com/pytorch/pytorch/pull/5617
391
                module.weight.data.normal_(mean=0.0, std=config.initializer_range)
392
            elif isinstance(module, BERTLayerNorm):
393
394
                module.beta.data.normal_(mean=0.0, std=config.initializer_range)
                module.gamma.data.normal_(mean=0.0, std=config.initializer_range)
395
396
            if isinstance(module, nn.Linear):
                module.bias.data.zero_()
397
398
399
400
401
402
403
404
405
406
407
408
409
        self.apply(init_weights)

    def forward(self, input_ids, token_type_ids, attention_mask, labels=None):
        _, pooled_output = self.bert(input_ids, token_type_ids, attention_mask)
        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)

        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(logits, labels)
            return loss, logits
        else:
            return logits
410
411
412

class BertForQuestionAnswering(nn.Module):
    """BERT model for Question Answering (span extraction).
thomwolf's avatar
thomwolf committed
413
414
    This module is composed of the BERT model with a linear layer on top of
    the sequence output that computes start_logits and end_logits
415
416
417
418
419
420
421
422
423
424
425
426

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 2, 0]])

    config = BertConfig(vocab_size=32000, hidden_size=512,
        num_hidden_layers=8, num_attention_heads=6, intermediate_size=1024)

    model = BertForQuestionAnswering(config)
thomwolf's avatar
thomwolf committed
427
    start_logits, end_logits = model(input_ids, token_type_ids, input_mask)
428
429
430
431
432
    ```
    """
    def __init__(self, config):
        super(BertForQuestionAnswering, self).__init__()
        self.bert = BertModel(config)
thomwolf's avatar
thomwolf committed
433
        # TODO check with Google if it's normal there is no dropout on the token classifier of SQuAD in the TF version
434
435
436
        # self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.qa_outputs = nn.Linear(config.hidden_size, 2)

437
438
        def init_weights(module):
            if isinstance(module, (nn.Linear, nn.Embedding)):
thomwolf's avatar
thomwolf committed
439
                # Slightly different from the TF version which uses truncated_normal for initialization
440
                # cf https://github.com/pytorch/pytorch/pull/5617
441
                module.weight.data.normal_(mean=0.0, std=config.initializer_range)
442
            elif isinstance(module, BERTLayerNorm):
443
444
                module.beta.data.normal_(mean=0.0, std=config.initializer_range)
                module.gamma.data.normal_(mean=0.0, std=config.initializer_range)
445
446
            if isinstance(module, nn.Linear):
                module.bias.data.zero_()
447
448
449
450
451
452
453
        self.apply(init_weights)

    def forward(self, input_ids, token_type_ids, attention_mask, start_positions=None, end_positions=None):
        all_encoder_layers, _ = self.bert(input_ids, token_type_ids, attention_mask)
        sequence_output = all_encoder_layers[-1]
        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, dim=-1)
454
455
        start_logits = start_logits.squeeze(-1)
        end_logits = end_logits.squeeze(-1)
456
457

        if start_positions is not None and end_positions is not None:
458
459
460
461
462
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
463
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
464
            ignored_index = start_logits.size(1)
465
466
467
468
            start_positions.clamp_(0, ignored_index)
            end_positions.clamp_(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
469
470
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
471
            total_loss = (start_loss + end_loss) / 2
472
            return total_loss
473
474
        else:
            return start_logits, end_logits