test_benchmark.py 8.54 KB
Newer Older
1
2
3
4
5
import os
import tempfile
import unittest
from pathlib import Path

Patrick von Platen's avatar
Patrick von Platen committed
6
from transformers import AutoConfig, is_torch_available
7

Patrick von Platen's avatar
Patrick von Platen committed
8
from .utils import require_torch, torch_device
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28


if is_torch_available():
    from transformers import (
        PyTorchBenchmarkArguments,
        PyTorchBenchmark,
    )


@require_torch
class BenchmarkTest(unittest.TestCase):
    def check_results_dict_not_empty(self, results):
        for model_result in results.values():
            for batch_size, sequence_length in zip(model_result["bs"], model_result["ss"]):
                result = model_result["result"][batch_size][sequence_length]
                self.assertIsNotNone(result)

    def test_inference_no_configs(self):
        MODEL_ID = "sshleifer/tiny-gpt2"
        benchmark_args = PyTorchBenchmarkArguments(
Patrick von Platen's avatar
Patrick von Platen committed
29
30
31
32
33
34
            models=[MODEL_ID],
            training=False,
            no_inference=False,
            sequence_lengths=[8],
            batch_sizes=[1],
            no_multi_process=True,
35
36
37
38
39
40
        )
        benchmark = PyTorchBenchmark(benchmark_args)
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_inference_result)
        self.check_results_dict_not_empty(results.memory_inference_result)

41
42
43
44
45
46
47
48
49
    def test_inference_torchscript(self):
        MODEL_ID = "sshleifer/tiny-gpt2"
        benchmark_args = PyTorchBenchmarkArguments(
            models=[MODEL_ID],
            training=False,
            no_inference=False,
            torchscript=True,
            sequence_lengths=[8],
            batch_sizes=[1],
Patrick von Platen's avatar
Patrick von Platen committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
            no_multi_process=True,
        )
        benchmark = PyTorchBenchmark(benchmark_args)
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_inference_result)
        self.check_results_dict_not_empty(results.memory_inference_result)

    @unittest.skipIf(torch_device == "cpu", "Cant do half precision")
    def test_inference_fp16(self):
        MODEL_ID = "sshleifer/tiny-gpt2"
        benchmark_args = PyTorchBenchmarkArguments(
            models=[MODEL_ID],
            training=False,
            no_inference=False,
            fp16=True,
            sequence_lengths=[8],
            batch_sizes=[1],
            no_multi_process=True,
68
69
70
71
72
73
        )
        benchmark = PyTorchBenchmark(benchmark_args)
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_inference_result)
        self.check_results_dict_not_empty(results.memory_inference_result)

74
75
76
    def test_train_no_configs(self):
        MODEL_ID = "sshleifer/tiny-gpt2"
        benchmark_args = PyTorchBenchmarkArguments(
Patrick von Platen's avatar
Patrick von Platen committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
            models=[MODEL_ID],
            training=True,
            no_inference=True,
            sequence_lengths=[8],
            batch_sizes=[1],
            no_multi_process=True,
        )
        benchmark = PyTorchBenchmark(benchmark_args)
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_train_result)
        self.check_results_dict_not_empty(results.memory_train_result)

    @unittest.skipIf(torch_device == "cpu", "Cant do half precision")
    def test_train_no_configs_fp16(self):
        MODEL_ID = "sshleifer/tiny-gpt2"
        benchmark_args = PyTorchBenchmarkArguments(
            models=[MODEL_ID],
            training=True,
            no_inference=True,
            sequence_lengths=[8],
            batch_sizes=[1],
            fp16=True,
            no_multi_process=True,
100
101
102
103
104
105
106
107
        )
        benchmark = PyTorchBenchmark(benchmark_args)
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_train_result)
        self.check_results_dict_not_empty(results.memory_train_result)

    def test_inference_with_configs(self):
        MODEL_ID = "sshleifer/tiny-gpt2"
Patrick von Platen's avatar
Patrick von Platen committed
108
109
        config = AutoConfig.from_pretrained(MODEL_ID)
        benchmark_args = PyTorchBenchmarkArguments(
Patrick von Platen's avatar
Patrick von Platen committed
110
111
112
113
114
115
            models=[MODEL_ID],
            training=False,
            no_inference=False,
            sequence_lengths=[8],
            batch_sizes=[1],
            no_multi_process=True,
Patrick von Platen's avatar
Patrick von Platen committed
116
117
118
119
120
121
122
123
124
        )
        benchmark = PyTorchBenchmark(benchmark_args, configs=[config])
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_inference_result)
        self.check_results_dict_not_empty(results.memory_inference_result)

    def test_inference_encoder_decoder_with_configs(self):
        MODEL_ID = "sshleifer/tinier_bart"
        config = AutoConfig.from_pretrained(MODEL_ID)
125
        benchmark_args = PyTorchBenchmarkArguments(
Patrick von Platen's avatar
Patrick von Platen committed
126
127
128
129
130
131
            models=[MODEL_ID],
            training=False,
            no_inference=False,
            sequence_lengths=[8],
            batch_sizes=[1],
            no_multi_process=True,
132
133
134
135
136
137
138
        )
        benchmark = PyTorchBenchmark(benchmark_args, configs=[config])
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_inference_result)
        self.check_results_dict_not_empty(results.memory_inference_result)

    def test_train_with_configs(self):
139
140
141
142
143
144
145
146
        MODEL_ID = "sshleifer/tiny-gpt2"
        config = AutoConfig.from_pretrained(MODEL_ID)
        benchmark_args = PyTorchBenchmarkArguments(
            models=[MODEL_ID],
            training=True,
            no_inference=True,
            sequence_lengths=[8],
            batch_sizes=[1],
Patrick von Platen's avatar
Patrick von Platen committed
147
            no_multi_process=True,
148
149
150
151
        )
        benchmark = PyTorchBenchmark(benchmark_args, configs=[config])
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_train_result)
Patrick von Platen's avatar
Patrick von Platen committed
152
153
154
155
156
        self.check_results_dict_not_empty(results.memory_train_result)

    def test_train_encoder_decoder_with_configs(self):
        MODEL_ID = "sshleifer/tinier_bart"
        config = AutoConfig.from_pretrained(MODEL_ID)
157
        benchmark_args = PyTorchBenchmarkArguments(
Patrick von Platen's avatar
Patrick von Platen committed
158
159
160
161
162
163
            models=[MODEL_ID],
            training=True,
            no_inference=True,
            sequence_lengths=[8],
            batch_sizes=[1],
            no_multi_process=True,
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
        )
        benchmark = PyTorchBenchmark(benchmark_args, configs=[config])
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_train_result)
        self.check_results_dict_not_empty(results.memory_train_result)

    def test_save_csv_files(self):
        MODEL_ID = "sshleifer/tiny-gpt2"
        with tempfile.TemporaryDirectory() as tmp_dir:
            benchmark_args = PyTorchBenchmarkArguments(
                models=[MODEL_ID],
                training=True,
                no_inference=False,
                save_to_csv=True,
                sequence_lengths=[8],
                batch_sizes=[1],
                inference_time_csv_file=os.path.join(tmp_dir, "inf_time.csv"),
                train_memory_csv_file=os.path.join(tmp_dir, "train_mem.csv"),
                inference_memory_csv_file=os.path.join(tmp_dir, "inf_mem.csv"),
                train_time_csv_file=os.path.join(tmp_dir, "train_time.csv"),
                env_info_csv_file=os.path.join(tmp_dir, "env.csv"),
Patrick von Platen's avatar
Patrick von Platen committed
185
                no_multi_process=True,
186
187
188
189
190
191
192
193
            )
            benchmark = PyTorchBenchmark(benchmark_args)
            benchmark.run()
            self.assertTrue(Path(os.path.join(tmp_dir, "inf_time.csv")).exists())
            self.assertTrue(Path(os.path.join(tmp_dir, "train_time.csv")).exists())
            self.assertTrue(Path(os.path.join(tmp_dir, "inf_mem.csv")).exists())
            self.assertTrue(Path(os.path.join(tmp_dir, "train_mem.csv")).exists())
            self.assertTrue(Path(os.path.join(tmp_dir, "env.csv")).exists())
Patrick von Platen's avatar
Patrick von Platen committed
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213

    def test_trace_memory(self):
        MODEL_ID = "sshleifer/tiny-gpt2"

        def _check_summary_is_not_empty(summary):
            self.assertTrue(hasattr(summary, "sequential"))
            self.assertTrue(hasattr(summary, "cumulative"))
            self.assertTrue(hasattr(summary, "current"))
            self.assertTrue(hasattr(summary, "total"))

        with tempfile.TemporaryDirectory() as tmp_dir:
            benchmark_args = PyTorchBenchmarkArguments(
                models=[MODEL_ID],
                training=True,
                no_inference=False,
                sequence_lengths=[8],
                batch_sizes=[1],
                log_filename=os.path.join(tmp_dir, "log.txt"),
                log_print=True,
                trace_memory_line_by_line=True,
Patrick von Platen's avatar
Patrick von Platen committed
214
                no_multi_process=True,
Patrick von Platen's avatar
Patrick von Platen committed
215
216
217
218
219
220
            )
            benchmark = PyTorchBenchmark(benchmark_args)
            result = benchmark.run()
            _check_summary_is_not_empty(result.inference_summary)
            _check_summary_is_not_empty(result.train_summary)
            self.assertTrue(Path(os.path.join(tmp_dir, "log.txt")).exists())