run_ner.py 24.2 KB
Newer Older
1
#!/usr/bin/env python
2
# coding=utf-8
3
# Copyright 2020 The HuggingFace Team All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
17
18
"""
Fine-tuning the library models for token classification.
"""
Sylvain Gugger's avatar
Sylvain Gugger committed
19
20
# You can also adapt this script on your own token classification task and datasets. Pointers for this are left as
# comments.
21

22
23
import logging
import os
24
import sys
Julien Chaumond's avatar
Julien Chaumond committed
25
from dataclasses import dataclass, field
26
from typing import Optional
27

28
import datasets
29
import numpy as np
30
from datasets import ClassLabel, load_dataset, load_metric
Aymeric Augustin's avatar
Aymeric Augustin committed
31

32
import transformers
Aymeric Augustin's avatar
Aymeric Augustin committed
33
from transformers import (
34
35
36
    AutoConfig,
    AutoModelForTokenClassification,
    AutoTokenizer,
37
    DataCollatorForTokenClassification,
Julien Chaumond's avatar
Julien Chaumond committed
38
    HfArgumentParser,
39
    PretrainedConfig,
40
    PreTrainedTokenizerFast,
Julien Chaumond's avatar
Julien Chaumond committed
41
42
43
    Trainer,
    TrainingArguments,
    set_seed,
Aymeric Augustin's avatar
Aymeric Augustin committed
44
)
45
from transformers.trainer_utils import get_last_checkpoint
46
from transformers.utils import check_min_version
47
from transformers.utils.versions import require_version
Aymeric Augustin's avatar
Aymeric Augustin committed
48
49


50
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Lysandre's avatar
Lysandre committed
51
check_min_version("4.16.0")
Sylvain Gugger's avatar
Sylvain Gugger committed
52

53
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/token-classification/requirements.txt")
54

55
56
57
logger = logging.getLogger(__name__)


Julien Chaumond's avatar
Julien Chaumond committed
58
59
60
61
62
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """
63

Julien Chaumond's avatar
Julien Chaumond committed
64
65
    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
66
    )
Julien Chaumond's avatar
Julien Chaumond committed
67
68
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
69
    )
Julien Chaumond's avatar
Julien Chaumond committed
70
71
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
72
    )
Julien Chaumond's avatar
Julien Chaumond committed
73
    cache_dir: Optional[str] = field(
74
75
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
76
    )
77
78
79
80
81
82
83
84
85
86
87
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
            "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
            "with private models)."
        },
    )
88
89


Julien Chaumond's avatar
Julien Chaumond committed
90
91
92
93
94
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """
95

96
97
98
99
100
101
    task_name: Optional[str] = field(default="ner", metadata={"help": "The name of the task (ner, pos...)."})
    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
102
    )
103
104
105
106
    train_file: Optional[str] = field(
        default=None, metadata={"help": "The input training data file (a csv or JSON file)."}
    )
    validation_file: Optional[str] = field(
107
        default=None,
108
        metadata={"help": "An optional input evaluation data file to evaluate on (a csv or JSON file)."},
109
    )
110
111
112
    test_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input test data file to predict on (a csv or JSON file)."},
113
    )
114
115
116
117
118
119
    text_column_name: Optional[str] = field(
        default=None, metadata={"help": "The column name of text to input in the file (a csv or JSON file)."}
    )
    label_column_name: Optional[str] = field(
        default=None, metadata={"help": "The column name of label to input in the file (a csv or JSON file)."}
    )
Julien Chaumond's avatar
Julien Chaumond committed
120
121
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
122
    )
123
124
125
126
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
127
128
129
130
131
132
133
    max_seq_length: int = field(
        default=None,
        metadata={
            "help": "The maximum total input sequence length after tokenization. If set, sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
    )
134
135
136
137
138
139
140
141
    pad_to_max_length: bool = field(
        default=False,
        metadata={
            "help": "Whether to pad all samples to model maximum sentence length. "
            "If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
            "efficient on GPU but very bad for TPU."
        },
    )
142
143
144
145
146
147
148
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
            "value if set."
        },
    )
149
    max_eval_samples: Optional[int] = field(
150
151
        default=None,
        metadata={
152
            "help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
153
154
155
            "value if set."
        },
    )
156
    max_predict_samples: Optional[int] = field(
157
158
        default=None,
        metadata={
159
            "help": "For debugging purposes or quicker training, truncate the number of prediction examples to this "
160
161
162
            "value if set."
        },
    )
163
164
165
166
167
168
169
    label_all_tokens: bool = field(
        default=False,
        metadata={
            "help": "Whether to put the label for one word on all tokens of generated by that word or just on the "
            "one (in which case the other tokens will have a padding index)."
        },
    )
170
171
172
173
    return_entity_level_metrics: bool = field(
        default=False,
        metadata={"help": "Whether to return all the entity levels during evaluation or just the overall ones."},
    )
174
175
176
177
178
179
180
181
182
183
184
185

    def __post_init__(self):
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
        self.task_name = self.task_name.lower()
186

Julien Chaumond's avatar
Julien Chaumond committed
187
188
189
190
191
192
193

def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
194
195
196
197
198
199
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()
200
201

    # Setup logging
202
    logging.basicConfig(
203
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
204
        datefmt="%m/%d/%Y %H:%M:%S",
205
        handlers=[logging.StreamHandler(sys.stdout)],
206
    )
207
208
209
210
211
212
213

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
214
215

    # Log on each process the small summary:
216
    logger.warning(
217
218
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
219
    )
220
    logger.info(f"Training/evaluation parameters {training_args}")
221

222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

237
    # Set seed before initializing model.
Julien Chaumond's avatar
Julien Chaumond committed
238
    set_seed(training_args.seed)
239

240
241
242
243
244
245
246
247
248
249
250
    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
251
252
253
        raw_datasets = load_dataset(
            data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir
        )
254
255
256
257
258
259
260
261
262
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
        if data_args.test_file is not None:
            data_files["test"] = data_args.test_file
        extension = data_args.train_file.split(".")[-1]
263
        raw_datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)
264
265
266
267
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    if training_args.do_train:
268
269
        column_names = raw_datasets["train"].column_names
        features = raw_datasets["train"].features
270
    else:
271
272
        column_names = raw_datasets["validation"].column_names
        features = raw_datasets["validation"].features
273
274
275
276
277
278
279
280
281
282
283
284
285
286

    if data_args.text_column_name is not None:
        text_column_name = data_args.text_column_name
    elif "tokens" in column_names:
        text_column_name = "tokens"
    else:
        text_column_name = column_names[0]

    if data_args.label_column_name is not None:
        label_column_name = data_args.label_column_name
    elif f"{data_args.task_name}_tags" in column_names:
        label_column_name = f"{data_args.task_name}_tags"
    else:
        label_column_name = column_names[1]
287

Sylvain Gugger's avatar
Sylvain Gugger committed
288
289
    # In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the
    # unique labels.
290
291
292
293
294
295
296
297
    def get_label_list(labels):
        unique_labels = set()
        for label in labels:
            unique_labels = unique_labels | set(label)
        label_list = list(unique_labels)
        label_list.sort()
        return label_list

Sylvain Gugger's avatar
Sylvain Gugger committed
298
299
    if isinstance(features[label_column_name].feature, ClassLabel):
        label_list = features[label_column_name].feature.names
300
        label_keys = list(range(len(label_list)))
Sylvain Gugger's avatar
Sylvain Gugger committed
301
    else:
302
        label_list = get_label_list(raw_datasets["train"][label_column_name])
303
        label_keys = label_list
304

305
    num_labels = len(label_list)
306

307
    # Load pretrained model and tokenizer
Julien Chaumond's avatar
Julien Chaumond committed
308
309
310
311
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
312
    config = AutoConfig.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
313
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
314
        num_labels=num_labels,
315
        finetuning_task=data_args.task_name,
Julien Chaumond's avatar
Julien Chaumond committed
316
        cache_dir=model_args.cache_dir,
317
318
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
319
    )
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339

    tokenizer_name_or_path = model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path
    if config.model_type in {"gpt2", "roberta"}:
        tokenizer = AutoTokenizer.from_pretrained(
            tokenizer_name_or_path,
            cache_dir=model_args.cache_dir,
            use_fast=True,
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
            add_prefix_space=True,
        )
    else:
        tokenizer = AutoTokenizer.from_pretrained(
            tokenizer_name_or_path,
            cache_dir=model_args.cache_dir,
            use_fast=True,
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
        )

340
    model = AutoModelForTokenClassification.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
341
342
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
343
        config=config,
Julien Chaumond's avatar
Julien Chaumond committed
344
        cache_dir=model_args.cache_dir,
345
346
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
347
    )
348

349
350
351
352
    # Tokenizer check: this script requires a fast tokenizer.
    if not isinstance(tokenizer, PreTrainedTokenizerFast):
        raise ValueError(
            "This example script only works for models that have a fast tokenizer. Checkout the big table of models "
353
            "at https://huggingface.co/transformers/index.html#supported-frameworks to find the model types that meet this "
354
355
356
            "requirement"
        )

357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
    if model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id:
        label_name_to_id = {k: v for k, v in model.config.label2id.items()}
        if list(sorted(label_name_to_id.keys())) == list(sorted(label_list)):
            label_to_id = {k: int(label_name_to_id[k]) for k in label_keys}
        else:
            logger.warning(
                "Your model seems to have been trained with labels, but they don't match the dataset: ",
                f"model labels: {list(sorted(label_name_to_id.keys()))}, dataset labels: {list(sorted(label_list))}."
                "\nIgnoring the model labels as a result.",
            )
    else:
        label_to_id = {k: i for i, k in enumerate(label_keys)}

    model.config.label2id = label_to_id
    model.config.id2label = {i: l for l, i in label_to_id.items()}

    # Map that sends B-Xxx label to its I-Xxx counterpart
    b_to_i_label = []
    for idx, label in enumerate(label_list):
        if label.startswith("B-") and label.replace("B-", "I-") in label_list:
            b_to_i_label.append(label_list.index(label.replace("B-", "I-")))
        else:
            b_to_i_label.append(idx)

381
382
383
384
385
386
387
388
389
390
    # Preprocessing the dataset
    # Padding strategy
    padding = "max_length" if data_args.pad_to_max_length else False

    # Tokenize all texts and align the labels with them.
    def tokenize_and_align_labels(examples):
        tokenized_inputs = tokenizer(
            examples[text_column_name],
            padding=padding,
            truncation=True,
391
            max_length=data_args.max_seq_length,
392
393
            # We use this argument because the texts in our dataset are lists of words (with a label for each word).
            is_split_into_words=True,
Julien Chaumond's avatar
Julien Chaumond committed
394
        )
395
        labels = []
396
397
398
        for i, label in enumerate(examples[label_column_name]):
            word_ids = tokenized_inputs.word_ids(batch_index=i)
            previous_word_idx = None
399
            label_ids = []
400
401
402
403
            for word_idx in word_ids:
                # Special tokens have a word id that is None. We set the label to -100 so they are automatically
                # ignored in the loss function.
                if word_idx is None:
404
                    label_ids.append(-100)
405
406
407
                # We set the label for the first token of each word.
                elif word_idx != previous_word_idx:
                    label_ids.append(label_to_id[label[word_idx]])
408
409
410
                # For the other tokens in a word, we set the label to either the current label or -100, depending on
                # the label_all_tokens flag.
                else:
411
412
413
414
                    if data_args.label_all_tokens:
                        label_ids.append(b_to_i_label[label_to_id[label[word_idx]]])
                    else:
                        label_ids.append(-100)
415
                previous_word_idx = word_idx
416
417
418
419
420

            labels.append(label_ids)
        tokenized_inputs["labels"] = labels
        return tokenized_inputs

421
    if training_args.do_train:
422
        if "train" not in raw_datasets:
423
            raise ValueError("--do_train requires a train dataset")
424
        train_dataset = raw_datasets["train"]
425
426
        if data_args.max_train_samples is not None:
            train_dataset = train_dataset.select(range(data_args.max_train_samples))
427
428
429
430
431
432
433
434
        with training_args.main_process_first(desc="train dataset map pre-processing"):
            train_dataset = train_dataset.map(
                tokenize_and_align_labels,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on train dataset",
            )
435
436

    if training_args.do_eval:
437
        if "validation" not in raw_datasets:
438
            raise ValueError("--do_eval requires a validation dataset")
439
        eval_dataset = raw_datasets["validation"]
440
441
        if data_args.max_eval_samples is not None:
            eval_dataset = eval_dataset.select(range(data_args.max_eval_samples))
442
443
444
445
446
447
448
449
        with training_args.main_process_first(desc="validation dataset map pre-processing"):
            eval_dataset = eval_dataset.map(
                tokenize_and_align_labels,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on validation dataset",
            )
450
451

    if training_args.do_predict:
452
        if "test" not in raw_datasets:
453
            raise ValueError("--do_predict requires a test dataset")
454
        predict_dataset = raw_datasets["test"]
455
456
        if data_args.max_predict_samples is not None:
            predict_dataset = predict_dataset.select(range(data_args.max_predict_samples))
457
458
459
460
461
462
463
464
        with training_args.main_process_first(desc="prediction dataset map pre-processing"):
            predict_dataset = predict_dataset.map(
                tokenize_and_align_labels,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on prediction dataset",
            )
Julien Chaumond's avatar
Julien Chaumond committed
465

466
    # Data collator
467
    data_collator = DataCollatorForTokenClassification(tokenizer, pad_to_multiple_of=8 if training_args.fp16 else None)
Julien Chaumond's avatar
Julien Chaumond committed
468

469
    # Metrics
470
471
    metric = load_metric("seqeval")

472
473
474
    def compute_metrics(p):
        predictions, labels = p
        predictions = np.argmax(predictions, axis=2)
Julien Chaumond's avatar
Julien Chaumond committed
475

476
477
478
479
480
481
482
483
484
        # Remove ignored index (special tokens)
        true_predictions = [
            [label_list[p] for (p, l) in zip(prediction, label) if l != -100]
            for prediction, label in zip(predictions, labels)
        ]
        true_labels = [
            [label_list[l] for (p, l) in zip(prediction, label) if l != -100]
            for prediction, label in zip(predictions, labels)
        ]
Julien Chaumond's avatar
Julien Chaumond committed
485

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
        results = metric.compute(predictions=true_predictions, references=true_labels)
        if data_args.return_entity_level_metrics:
            # Unpack nested dictionaries
            final_results = {}
            for key, value in results.items():
                if isinstance(value, dict):
                    for n, v in value.items():
                        final_results[f"{key}_{n}"] = v
                else:
                    final_results[key] = value
            return final_results
        else:
            return {
                "precision": results["overall_precision"],
                "recall": results["overall_recall"],
                "f1": results["overall_f1"],
                "accuracy": results["overall_accuracy"],
            }
Julien Chaumond's avatar
Julien Chaumond committed
504
505
506
507
508

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
509
510
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
511
512
        tokenizer=tokenizer,
        data_collator=data_collator,
Julien Chaumond's avatar
Julien Chaumond committed
513
514
        compute_metrics=compute_metrics,
    )
515
516

    # Training
Julien Chaumond's avatar
Julien Chaumond committed
517
    if training_args.do_train:
518
519
520
521
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
522
523
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
524
        metrics = train_result.metrics
525
        trainer.save_model()  # Saves the tokenizer too for easy upload
526

527
528
529
530
531
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

532
533
534
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
535

536
    # Evaluation
537
    if training_args.do_eval:
Julien Chaumond's avatar
Julien Chaumond committed
538
539
        logger.info("*** Evaluate ***")

540
541
        metrics = trainer.evaluate()

542
543
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
Julien Chaumond's avatar
Julien Chaumond committed
544

545
546
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
Julien Chaumond's avatar
Julien Chaumond committed
547
548

    # Predict
549
    if training_args.do_predict:
550
551
        logger.info("*** Predict ***")

552
        predictions, labels, metrics = trainer.predict(predict_dataset, metric_key_prefix="predict")
553
        predictions = np.argmax(predictions, axis=2)
Julien Chaumond's avatar
Julien Chaumond committed
554

555
556
557
558
559
        # Remove ignored index (special tokens)
        true_predictions = [
            [label_list[p] for (p, l) in zip(prediction, label) if l != -100]
            for prediction, label in zip(predictions, labels)
        ]
Julien Chaumond's avatar
Julien Chaumond committed
560

561
562
        trainer.log_metrics("predict", metrics)
        trainer.save_metrics("predict", metrics)
Julien Chaumond's avatar
Julien Chaumond committed
563

564
        # Save predictions
565
        output_predictions_file = os.path.join(training_args.output_dir, "predictions.txt")
566
        if trainer.is_world_process_zero():
567
            with open(output_predictions_file, "w") as writer:
568
569
                for prediction in true_predictions:
                    writer.write(" ".join(prediction) + "\n")
570

571
572
573
574
575
576
577
578
    kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "token-classification"}
    if data_args.dataset_name is not None:
        kwargs["dataset_tags"] = data_args.dataset_name
        if data_args.dataset_config_name is not None:
            kwargs["dataset_args"] = data_args.dataset_config_name
            kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
        else:
            kwargs["dataset"] = data_args.dataset_name
Sylvain Gugger's avatar
Sylvain Gugger committed
579

580
    if training_args.push_to_hub:
Sylvain Gugger's avatar
Sylvain Gugger committed
581
        trainer.push_to_hub(**kwargs)
582
583
    else:
        trainer.create_model_card(**kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
584

585

586
587
588
589
590
def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


591
592
if __name__ == "__main__":
    main()