test_modeling_gpt2.py 36.9 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

17
import datetime
18
import gc
19
import math
20
21
import unittest

22
from transformers import GPT2Config, is_torch_available
23
from transformers.testing_utils import require_torch, slow, torch_device
thomwolf's avatar
thomwolf committed
24

25
from ...generation.test_utils import GenerationTesterMixin
Yih-Dar's avatar
Yih-Dar committed
26
27
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
28
from ...test_pipeline_mixin import PipelineTesterMixin
Aymeric Augustin's avatar
Aymeric Augustin committed
29
30


31
if is_torch_available():
32
    import torch
33

34
    from transformers import (
35
        GPT2_PRETRAINED_MODEL_ARCHIVE_LIST,
36
        GPT2DoubleHeadsModel,
peter-sk's avatar
peter-sk committed
37
        GPT2ForQuestionAnswering,
38
        GPT2ForSequenceClassification,
39
        GPT2ForTokenClassification,
40
41
        GPT2LMHeadModel,
        GPT2Model,
42
        GPT2Tokenizer,
43
44
    )

45

46
47
48
49
50
51
52
53
54
55
56
57
58
class GPT2ModelTester:
    def __init__(
        self,
        parent,
        batch_size=14,
        seq_length=7,
        is_training=True,
        use_token_type_ids=True,
        use_input_mask=True,
        use_labels=True,
        use_mc_token_ids=True,
        vocab_size=99,
        hidden_size=32,
59
        num_hidden_layers=2,
60
61
62
63
64
65
66
67
68
69
70
71
72
73
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
        scope=None,
    ):
        self.parent = parent
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_token_type_ids = use_token_type_ids
        self.use_input_mask = use_input_mask
        self.use_labels = use_labels
        self.use_mc_token_ids = use_mc_token_ids
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.num_choices = num_choices
95
96
97
        self.scope = None
        self.bos_token_id = vocab_size - 1
        self.eos_token_id = vocab_size - 1
98
        self.pad_token_id = vocab_size - 1
99

100
101
102
    def get_large_model_config(self):
        return GPT2Config.from_pretrained("gpt2")

103
104
105
    def prepare_config_and_inputs(
        self, gradient_checkpointing=False, scale_attn_by_inverse_layer_idx=False, reorder_and_upcast_attn=False
    ):
106
107
108
109
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
110
            input_mask = random_attention_mask([self.batch_size, self.seq_length])
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        mc_token_ids = None
        if self.use_mc_token_ids:
            mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

128
129
130
131
132
        config = self.get_config(
            gradient_checkpointing=gradient_checkpointing,
            scale_attn_by_inverse_layer_idx=scale_attn_by_inverse_layer_idx,
            reorder_and_upcast_attn=reorder_and_upcast_attn,
        )
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

        head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)

        return (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        )

148
149
150
    def get_config(
        self, gradient_checkpointing=False, scale_attn_by_inverse_layer_idx=False, reorder_and_upcast_attn=False
    ):
151
152
153
154
155
        return GPT2Config(
            vocab_size=self.vocab_size,
            n_embd=self.hidden_size,
            n_layer=self.num_hidden_layers,
            n_head=self.num_attention_heads,
156
157
158
159
            n_inner=self.intermediate_size,
            activation_function=self.hidden_act,
            resid_pdrop=self.hidden_dropout_prob,
            attn_pdrop=self.attention_probs_dropout_prob,
160
161
162
            n_positions=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            initializer_range=self.initializer_range,
163
            use_cache=True,
164
165
166
            bos_token_id=self.bos_token_id,
            eos_token_id=self.eos_token_id,
            pad_token_id=self.pad_token_id,
167
168
169
            gradient_checkpointing=gradient_checkpointing,
            scale_attn_by_inverse_layer_idx=scale_attn_by_inverse_layer_idx,
            reorder_and_upcast_attn=reorder_and_upcast_attn,
170
171
        )

172
173
174
175
176
    def get_pipeline_config(self):
        config = self.get_config()
        config.vocab_size = 300
        return config

177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
    def prepare_config_and_inputs_for_decoder(self):
        (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = self.prepare_config_and_inputs()

        encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
        encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        return (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        )

206
207
208
209
210
    def create_and_check_gpt2_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = GPT2Model(config=config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
211
212
213
        result = model(input_ids, token_type_ids=token_type_ids, head_mask=head_mask)
        result = model(input_ids, token_type_ids=token_type_ids)
        result = model(input_ids)
214

Stas Bekman's avatar
Stas Bekman committed
215
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
216
        self.parent.assertEqual(len(result.past_key_values), config.n_layer)
217
218
219
220
221
222
223

    def create_and_check_gpt2_model_past(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = GPT2Model(config=config)
        model.to(torch_device)
        model.eval()

        # first forward pass
224
225
226
227
228
229
230
        outputs = model(input_ids, token_type_ids=token_type_ids, use_cache=True)
        outputs_use_cache_conf = model(input_ids, token_type_ids=token_type_ids)
        outputs_no_past = model(input_ids, token_type_ids=token_type_ids, use_cache=False)

        self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
        self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)

Sylvain Gugger's avatar
Sylvain Gugger committed
231
        output, past = outputs.to_tuple()
232
233
234
235
236
237
238
239
240

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
        next_token_types = ids_tensor([self.batch_size, 1], self.type_vocab_size)

        # append to next input_ids and token_type_ids
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        next_token_type_ids = torch.cat([token_type_ids, next_token_types], dim=-1)

Sylvain Gugger's avatar
Sylvain Gugger committed
241
        output_from_no_past = model(next_input_ids, token_type_ids=next_token_type_ids)["last_hidden_state"]
Sylvain Gugger's avatar
Sylvain Gugger committed
242
243
244
        output_from_past = model(next_tokens, token_type_ids=next_token_types, past_key_values=past)[
            "last_hidden_state"
        ]
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

    def create_and_check_gpt2_model_attention_mask_past(
        self, config, input_ids, input_mask, head_mask, token_type_ids, *args
    ):
        model = GPT2Model(config=config)
        model.to(torch_device)
        model.eval()

        # create attention mask
        attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
        half_seq_length = self.seq_length // 2
        attn_mask[:, half_seq_length:] = 0

        # first forward pass
Sylvain Gugger's avatar
Sylvain Gugger committed
267
        output, past = model(input_ids, attention_mask=attn_mask).to_tuple()
268
269
270
271
272
273
274
275
276
277
278
279

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

        # change a random masked slice from input_ids
        random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1
        random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1)
        input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens

        # append to next input_ids and attn_mask
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        attn_mask = torch.cat(
Lysandre's avatar
Lysandre committed
280
281
            [attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)],
            dim=1,
282
283
284
        )

        # get two different outputs
Sylvain Gugger's avatar
Sylvain Gugger committed
285
        output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"]
Sylvain Gugger's avatar
Sylvain Gugger committed
286
        output_from_past = model(next_tokens, past_key_values=past, attention_mask=attn_mask)["last_hidden_state"]
287
288
289
290
291
292
293
294
295

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

296
297
298
299
300
301
302
303
    def create_and_check_gpt2_model_past_large_inputs(
        self, config, input_ids, input_mask, head_mask, token_type_ids, *args
    ):
        model = GPT2Model(config=config)
        model.to(torch_device)
        model.eval()

        # first forward pass
304
        outputs = model(input_ids, token_type_ids=token_type_ids, attention_mask=input_mask, use_cache=True)
305
306
307
308
309
310

        output, past = outputs.to_tuple()

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_token_types = ids_tensor([self.batch_size, 3], self.type_vocab_size)
311
        next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
312
313
314
315

        # append to next input_ids and token_type_ids
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        next_token_type_ids = torch.cat([token_type_ids, next_token_types], dim=-1)
316
317
318
319
320
321
322
323
        next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)

        output_from_no_past = model(
            next_input_ids, token_type_ids=next_token_type_ids, attention_mask=next_attention_mask
        )["last_hidden_state"]
        output_from_past = model(
            next_tokens, token_type_ids=next_token_types, attention_mask=next_attention_mask, past_key_values=past
        )["last_hidden_state"]
324
325
326
327
328
329
330
331
332
333
        self.parent.assertTrue(output_from_past.shape[1] == next_tokens.shape[1])

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

334
335
336
337
338
    def create_and_check_lm_head_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = GPT2LMHeadModel(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
339
        result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)
Stas Bekman's avatar
Stas Bekman committed
340
341
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
342

343
344
345
    def create_and_check_forward_and_backwards(
        self, config, input_ids, input_mask, head_mask, token_type_ids, *args, gradient_checkpointing=False
    ):
346
347
        model = GPT2LMHeadModel(config)
        model.to(torch_device)
348
349
        if gradient_checkpointing:
            model.gradient_checkpointing_enable()
350
351
352
353
354
355

        result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
        result.loss.backward()

356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
    def create_and_check_double_lm_head_model(
        self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, *args
    ):
        model = GPT2DoubleHeadsModel(config)
        model.to(torch_device)
        model.eval()

        multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()

        inputs = {
            "input_ids": multiple_choice_inputs_ids,
            "mc_token_ids": mc_token_ids,
            "attention_mask": multiple_choice_input_mask,
            "token_type_ids": multiple_choice_token_type_ids,
            "labels": multiple_choice_inputs_ids,
        }

Sylvain Gugger's avatar
Sylvain Gugger committed
375
        result = model(**inputs)
376
        self.parent.assertEqual(result.loss.shape, ())
Stas Bekman's avatar
Stas Bekman committed
377
        self.parent.assertEqual(
378
            result.logits.shape, (self.batch_size, self.num_choices, self.seq_length, self.vocab_size)
379
        )
Stas Bekman's avatar
Stas Bekman committed
380
        self.parent.assertEqual(result.mc_logits.shape, (self.batch_size, self.num_choices))
381

peter-sk's avatar
peter-sk committed
382
383
384
385
386
387
388
389
390
391
392
    def create_and_check_gpt2_for_question_answering(
        self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, *args
    ):
        config.num_labels = self.num_labels
        model = GPT2ForQuestionAnswering(config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))

393
394
395
396
397
398
399
400
401
402
    def create_and_check_gpt2_for_sequence_classification(
        self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, *args
    ):
        config.num_labels = self.num_labels
        model = GPT2ForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))

403
404
405
406
407
408
409
410
411
412
    def create_and_check_gpt2_for_token_classification(
        self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, *args
    ):
        config.num_labels = self.num_labels
        model = GPT2ForTokenClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))

413
414
415
416
417
418
419
420
    def create_and_check_gpt2_weight_initialization(self, config, *args):
        model = GPT2Model(config)
        model_std = model.config.initializer_range / math.sqrt(2 * model.config.n_layer)
        for key in model.state_dict().keys():
            if "c_proj" in key and "weight" in key:
                self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std), 0.001)
                self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0), 0.01)

421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()

        (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs

        inputs_dict = {
            "input_ids": input_ids,
            "token_type_ids": token_type_ids,
            "head_mask": head_mask,
        }

        return config, inputs_dict


445
@require_torch
446
class GPT2ModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
447
    all_model_classes = (
peter-sk's avatar
peter-sk committed
448
449
450
451
452
453
454
455
        (
            GPT2Model,
            GPT2LMHeadModel,
            GPT2DoubleHeadsModel,
            GPT2ForQuestionAnswering,
            GPT2ForSequenceClassification,
            GPT2ForTokenClassification,
        )
456
457
458
459
        if is_torch_available()
        else ()
    )
    all_generative_model_classes = (GPT2LMHeadModel, GPT2DoubleHeadsModel) if is_torch_available() else ()
460
461
462
    pipeline_model_mapping = (
        {
            "feature-extraction": GPT2Model,
peter-sk's avatar
peter-sk committed
463
            "question-answering": GPT2ForQuestionAnswering,
464
465
466
467
468
469
470
471
            "text-classification": GPT2ForSequenceClassification,
            "text-generation": GPT2LMHeadModel,
            "token-classification": GPT2ForTokenClassification,
            "zero-shot": GPT2ForSequenceClassification,
        }
        if is_torch_available()
        else {}
    )
472
    all_parallelizable_model_classes = (GPT2LMHeadModel, GPT2DoubleHeadsModel) if is_torch_available() else ()
473
    fx_compatible = True
474
    test_missing_keys = False
475
    test_model_parallel = True
476

477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
    # special case for DoubleHeads model
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)

        if return_labels:
            if model_class.__name__ == "GPT2DoubleHeadsModel":
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length),
                    dtype=torch.long,
                    device=torch_device,
                )
                inputs_dict["input_ids"] = inputs_dict["labels"]
                inputs_dict["token_type_ids"] = inputs_dict["labels"]
                inputs_dict["mc_token_ids"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.num_choices),
                    dtype=torch.long,
                    device=torch_device,
                )
                inputs_dict["mc_labels"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
        return inputs_dict

500
    def setUp(self):
501
        self.model_tester = GPT2ModelTester(self)
502
        self.config_tester = ConfigTester(self, config_class=GPT2Config, n_embd=37)
thomwolf's avatar
thomwolf committed
503

504
505
506
507
508
509
    def tearDown(self):
        super().tearDown()
        # clean-up as much as possible GPU memory occupied by PyTorch
        gc.collect()
        torch.cuda.empty_cache()

thomwolf's avatar
thomwolf committed
510
    def test_config(self):
511
        self.config_tester.run_common_tests()
thomwolf's avatar
thomwolf committed
512

513
514
515
    def test_gpt2_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_model(*config_and_inputs)
thomwolf's avatar
thomwolf committed
516

517
518
519
520
521
522
523
524
    def test_gpt2_model_past(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_model_past(*config_and_inputs)

    def test_gpt2_model_att_mask_past(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_model_attention_mask_past(*config_and_inputs)

525
526
527
528
    def test_gpt2_model_past_large_inputs(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_model_past_large_inputs(*config_and_inputs)

529
530
531
532
533
534
535
    def test_gpt2_lm_head_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_lm_head_model(*config_and_inputs)

    def test_gpt2_double_lm_head_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_double_lm_head_model(*config_and_inputs)
thomwolf's avatar
thomwolf committed
536

peter-sk's avatar
peter-sk committed
537
538
539
540
    def test_gpt2_question_answering_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_for_question_answering(*config_and_inputs)

541
542
543
544
    def test_gpt2_sequence_classification_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_for_sequence_classification(*config_and_inputs)

545
546
547
548
    def test_gpt2_token_classification_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_for_token_classification(*config_and_inputs)

549
    def test_gpt2_gradient_checkpointing(self):
550
551
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_forward_and_backwards(*config_and_inputs, gradient_checkpointing=True)
552

553
554
555
556
557
558
559
560
561
562
563
564
    def test_gpt2_scale_attn_by_inverse_layer_idx(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs(scale_attn_by_inverse_layer_idx=True)
        self.model_tester.create_and_check_forward_and_backwards(*config_and_inputs)

    def test_gpt2_reorder_and_upcast_attn(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs(reorder_and_upcast_attn=True)
        self.model_tester.create_and_check_forward_and_backwards(*config_and_inputs)

    def test_gpt2_weight_initialization(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_weight_initialization(*config_and_inputs)

565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
    @unittest.skip(
        reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing(self):
        pass

    @unittest.skip(
        reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant(self):
        pass

    @unittest.skip(
        reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant_false(self):
        pass

583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
    @slow
    def test_batch_generation(self):
        model = GPT2LMHeadModel.from_pretrained("gpt2")
        model.to(torch_device)
        tokenizer = GPT2Tokenizer.from_pretrained("gpt2")

        tokenizer.padding_side = "left"

        # Define PAD Token = EOS Token = 50256
        tokenizer.pad_token = tokenizer.eos_token
        model.config.pad_token_id = model.config.eos_token_id

        # use different length sentences to test batching
        sentences = [
            "Hello, my dog is a little",
            "Today, I",
        ]

        inputs = tokenizer(sentences, return_tensors="pt", padding=True)
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
        input_ids = inputs["input_ids"].to(torch_device)
        token_type_ids = torch.cat(
            [
                input_ids.new_full((input_ids.shape[0], input_ids.shape[1] - 1), 0),
                input_ids.new_full((input_ids.shape[0], 1), 500),
            ],
            dim=-1,
        )

        outputs = model.generate(
            input_ids=input_ids,
            attention_mask=inputs["attention_mask"].to(torch_device),
        )

        outputs_tt = model.generate(
            input_ids=input_ids,
            attention_mask=inputs["attention_mask"].to(torch_device),
            token_type_ids=token_type_ids,
        )

        inputs_non_padded = tokenizer(sentences[0], return_tensors="pt").input_ids.to(torch_device)
        output_non_padded = model.generate(input_ids=inputs_non_padded)

        num_paddings = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].long().sum().cpu().item()
        inputs_padded = tokenizer(sentences[1], return_tensors="pt").input_ids.to(torch_device)
        output_padded = model.generate(input_ids=inputs_padded, max_length=model.config.max_length - num_paddings)

        batch_out_sentence = tokenizer.batch_decode(outputs, skip_special_tokens=True)
        batch_out_sentence_tt = tokenizer.batch_decode(outputs_tt, skip_special_tokens=True)
        non_padded_sentence = tokenizer.decode(output_non_padded[0], skip_special_tokens=True)
        padded_sentence = tokenizer.decode(output_padded[0], skip_special_tokens=True)

        expected_output_sentence = [
            "Hello, my dog is a little bit of a mess. I'm not sure if he's going",
            "Today, I'm going to be doing a lot of research on this. I",
        ]
        self.assertListEqual(expected_output_sentence, batch_out_sentence)
        self.assertTrue(batch_out_sentence_tt != batch_out_sentence)  # token_type_ids should change output
        self.assertListEqual(expected_output_sentence, [non_padded_sentence, padded_sentence])

    @slow
    def test_batch_generation_2heads(self):
        model = GPT2DoubleHeadsModel.from_pretrained("gpt2")
        model.to(torch_device)
        tokenizer = GPT2Tokenizer.from_pretrained("gpt2")

        tokenizer.padding_side = "left"

        # This tokenizer has no pad token, so we have to set it in some way
        # Define PAD Token = EOS Token = 50256
        tokenizer.pad_token = tokenizer.eos_token
        model.config.pad_token_id = model.config.eos_token_id

        # use different length sentences to test batching
        sentences = [
            "Hello, my dog is a little",
            "Today, I",
        ]

        inputs = tokenizer(sentences, return_tensors="pt", padding=True)
        input_ids = inputs["input_ids"].to(torch_device)
        token_type_ids = torch.cat(
            [
                input_ids.new_full((input_ids.shape[0], input_ids.shape[1] - 1), 0),
                input_ids.new_full((input_ids.shape[0], 1), 500),
            ],
            dim=-1,
        )
670
671

        outputs = model.generate(
672
673
674
675
676
677
            input_ids=input_ids,
            attention_mask=inputs["attention_mask"].to(torch_device),
        )

        outputs_tt = model.generate(
            input_ids=input_ids,
678
            attention_mask=inputs["attention_mask"].to(torch_device),
679
            token_type_ids=token_type_ids,
680
681
682
683
684
685
686
687
688
689
        )

        inputs_non_padded = tokenizer(sentences[0], return_tensors="pt").input_ids.to(torch_device)
        output_non_padded = model.generate(input_ids=inputs_non_padded)

        num_paddings = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].long().sum().cpu().item()
        inputs_padded = tokenizer(sentences[1], return_tensors="pt").input_ids.to(torch_device)
        output_padded = model.generate(input_ids=inputs_padded, max_length=model.config.max_length - num_paddings)

        batch_out_sentence = tokenizer.batch_decode(outputs, skip_special_tokens=True)
690
        batch_out_sentence_tt = tokenizer.batch_decode(outputs_tt, skip_special_tokens=True)
691
692
693
694
695
696
697
698
        non_padded_sentence = tokenizer.decode(output_non_padded[0], skip_special_tokens=True)
        padded_sentence = tokenizer.decode(output_padded[0], skip_special_tokens=True)

        expected_output_sentence = [
            "Hello, my dog is a little bit of a mess. I'm not sure if he's going",
            "Today, I'm going to be doing a lot of research on this. I",
        ]
        self.assertListEqual(expected_output_sentence, batch_out_sentence)
699
        self.assertTrue(batch_out_sentence_tt != batch_out_sentence)  # token_type_ids should change output
700
701
        self.assertListEqual(expected_output_sentence, [non_padded_sentence, padded_sentence])

702
    @slow
703
    def test_model_from_pretrained(self):
704
        for model_name in GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
705
            model = GPT2Model.from_pretrained(model_name)
706
            self.assertIsNotNone(model)
707
708


709
@require_torch
710
class GPT2ModelLanguageGenerationTest(unittest.TestCase):
711
712
713
714
715
716
    def tearDown(self):
        super().tearDown()
        # clean-up as much as possible GPU memory occupied by PyTorch
        gc.collect()
        torch.cuda.empty_cache()

717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
    def _test_lm_generate_gpt2_helper(
        self,
        gradient_checkpointing=False,
        reorder_and_upcast_attn=False,
        scale_attn_by_inverse_layer_idx=False,
        verify_outputs=True,
    ):
        model = GPT2LMHeadModel.from_pretrained(
            "gpt2",
            reorder_and_upcast_attn=reorder_and_upcast_attn,
            scale_attn_by_inverse_layer_idx=scale_attn_by_inverse_layer_idx,
        )
        if gradient_checkpointing:
            model.gradient_checkpointing_enable()
        else:
            model.gradient_checkpointing_disable()
        model.to(torch_device)
Matt's avatar
Matt committed
734
735
736
737
738
739

        # The dog
        input_ids = torch.tensor([[464, 3290]], dtype=torch.long, device=torch_device)

        # The dog was found in a field near the intersection of West and West Streets.\n\nThe dog
        # fmt: off
740
        expected_output_ids = [
Matt's avatar
Matt committed
741
742
743
            464, 3290, 373, 1043, 287, 257, 2214, 1474, 262, 16246, 286, 2688, 290, 2688, 27262, 13, 198, 198, 464, 3290,
        ]
        # fmt: on
744
745
746
747
        output_ids = model.generate(input_ids, do_sample=False)
        if verify_outputs:
            self.assertListEqual(output_ids[0].tolist(), expected_output_ids)

748
749
    @slow
    def test_lm_generate_gpt2(self):
750
751
752
753
754
755
756
757
758
759
760
761
762
        self._test_lm_generate_gpt2_helper()

    @slow
    def test_lm_generate_gpt2_with_gradient_checkpointing(self):
        self._test_lm_generate_gpt2_helper(gradient_checkpointing=True)

    @slow
    def test_lm_generate_gpt2_with_reorder_and_upcast_attn(self):
        self._test_lm_generate_gpt2_helper(reorder_and_upcast_attn=True)

    @slow
    def test_lm_generate_gpt2_with_scale_attn_by_inverse_layer_idx(self):
        self._test_lm_generate_gpt2_helper(scale_attn_by_inverse_layer_idx=True, verify_outputs=False)
763
764

    @slow
765
766
767
    def test_gpt2_sample(self):
        tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
        model = GPT2LMHeadModel.from_pretrained("gpt2")
768
        model.to(torch_device)
769
770

        torch.manual_seed(0)
771
772
        tokenized = tokenizer("Today is a nice day and", return_tensors="pt", return_token_type_ids=True)
        input_ids = tokenized.input_ids.to(torch_device)
773
774
775
        output_ids = model.generate(input_ids, do_sample=True)
        output_str = tokenizer.decode(output_ids[0], skip_special_tokens=True)

776
777
778
779
780
781
782
783
        token_type_ids = tokenized.token_type_ids.to(torch_device)
        output_seq = model.generate(input_ids=input_ids, do_sample=True, num_return_sequences=5)
        output_seq_tt = model.generate(
            input_ids=input_ids, token_type_ids=token_type_ids, do_sample=True, num_return_sequences=5
        )
        output_seq_strs = tokenizer.batch_decode(output_seq, skip_special_tokens=True)
        output_seq_tt_strs = tokenizer.batch_decode(output_seq_tt, skip_special_tokens=True)

784
785
786
787
        EXPECTED_OUTPUT_STR = (
            "Today is a nice day and if you don't know anything about the state of play during your holiday"
        )
        self.assertEqual(output_str, EXPECTED_OUTPUT_STR)
788
        self.assertTrue(
789
            all(output_seq_strs[idx] != output_seq_tt_strs[idx] for idx in range(len(output_seq_tt_strs)))
790
        )  # token_type_ids should change output
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831

    @slow
    def test_gpt2_sample_max_time(self):
        tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
        model = GPT2LMHeadModel.from_pretrained("gpt2")
        model.to(torch_device)

        torch.manual_seed(0)
        tokenized = tokenizer("Today is a nice day and", return_tensors="pt", return_token_type_ids=True)
        input_ids = tokenized.input_ids.to(torch_device)

        MAX_TIME = 0.5

        start = datetime.datetime.now()
        model.generate(input_ids, do_sample=True, max_time=MAX_TIME, max_length=256)
        duration = datetime.datetime.now() - start
        self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME))
        self.assertLess(duration, datetime.timedelta(seconds=1.5 * MAX_TIME))

        start = datetime.datetime.now()
        model.generate(input_ids, do_sample=False, max_time=MAX_TIME, max_length=256)
        duration = datetime.datetime.now() - start
        self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME))
        self.assertLess(duration, datetime.timedelta(seconds=1.5 * MAX_TIME))

        start = datetime.datetime.now()
        model.generate(input_ids, do_sample=False, num_beams=2, max_time=MAX_TIME, max_length=256)
        duration = datetime.datetime.now() - start
        self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME))
        self.assertLess(duration, datetime.timedelta(seconds=1.5 * MAX_TIME))

        start = datetime.datetime.now()
        model.generate(input_ids, do_sample=True, num_beams=2, max_time=MAX_TIME, max_length=256)
        duration = datetime.datetime.now() - start
        self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME))
        self.assertLess(duration, datetime.timedelta(seconds=1.5 * MAX_TIME))

        start = datetime.datetime.now()
        model.generate(input_ids, do_sample=False, max_time=None, max_length=256)
        duration = datetime.datetime.now() - start
        self.assertGreater(duration, datetime.timedelta(seconds=1.5 * MAX_TIME))
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865

    @slow
    def test_contrastive_search_gpt2(self):
        article = (
            "DeepMind Technologies is a British artificial intelligence subsidiary of Alphabet Inc. and research "
            "laboratory founded in 2010. DeepMind was acquired by Google in 2014. The company is based"
        )

        gpt2_tokenizer = GPT2Tokenizer.from_pretrained("gpt2-large")
        gpt2_model = GPT2LMHeadModel.from_pretrained("gpt2-large").to(torch_device)
        input_ids = gpt2_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        outputs = gpt2_model.generate(input_ids, penalty_alpha=0.6, top_k=4, max_length=256)

        generated_text = gpt2_tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
                "DeepMind Technologies is a British artificial intelligence subsidiary of Alphabet Inc. and research "
                "laboratory founded in 2010. DeepMind was acquired by Google in 2014. The company is based in London, "
                "United Kingdom\n\nGoogle has a lot of data on its users and uses it to improve its products, such as "
                "Google Now, which helps users find the information they're looking for on the web. But the company "
                "is not the only one to collect data on its users. Facebook, for example, has its own facial "
                "recognition technology, as well as a database of millions of photos that it uses to personalize its "
                "News Feed.\n\nFacebook's use of data is a hot topic in the tech industry, with privacy advocates "
                "concerned about the company's ability to keep users' information private. In a blog post last "
                'year, Facebook CEO Mark Zuckerberg said his company would "do our best to be transparent about our '
                'data use and how we use it."\n\n"We have made it clear that we do not sell or share your data with '
                'third parties," Zuckerberg wrote. "If you have questions or concerns, please reach out to us at '
                'privacy@facebook.com."\n\nGoogle declined to comment on the privacy implications of its use of data, '
                "but said in a statement to The Associated Press that"
            ],
        )