test_modeling_flax_roberta.py 5.68 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
16
import unittest

17
18
import numpy as np

Sylvain Gugger's avatar
Sylvain Gugger committed
19
from transformers import RobertaConfig, is_flax_available
20
from transformers.testing_utils import require_flax, slow
21

Yih-Dar's avatar
Yih-Dar committed
22
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
23
24
25


if is_flax_available():
26
    from transformers.models.roberta.modeling_flax_roberta import (
27
        FlaxRobertaForCausalLM,
28
29
30
31
32
33
34
        FlaxRobertaForMaskedLM,
        FlaxRobertaForMultipleChoice,
        FlaxRobertaForQuestionAnswering,
        FlaxRobertaForSequenceClassification,
        FlaxRobertaForTokenClassification,
        FlaxRobertaModel,
    )
35
36


Sylvain Gugger's avatar
Sylvain Gugger committed
37
38
39
40
41
42
43
44
45
46
47
48
class FlaxRobertaModelTester(unittest.TestCase):
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_attention_mask=True,
        use_token_type_ids=True,
        use_labels=True,
        vocab_size=99,
        hidden_size=32,
49
        num_hidden_layers=2,
Sylvain Gugger's avatar
Sylvain Gugger committed
50
51
52
53
54
55
56
57
58
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
59
        num_choices=4,
Sylvain Gugger's avatar
Sylvain Gugger committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_attention_mask = use_attention_mask
        self.use_token_type_ids = use_token_type_ids
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
80
        self.num_choices = num_choices
Sylvain Gugger's avatar
Sylvain Gugger committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        attention_mask = None
        if self.use_attention_mask:
            attention_mask = random_attention_mask([self.batch_size, self.seq_length])

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        config = RobertaConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            is_decoder=False,
            initializer_range=self.initializer_range,
        )

        return config, input_ids, token_type_ids, attention_mask

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, input_ids, token_type_ids, attention_mask = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask}
        return config, inputs_dict
115

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
    def prepare_config_and_inputs_for_decoder(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, input_ids, token_type_ids, attention_mask = config_and_inputs

        config.is_decoder = True
        encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
        encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        return (
            config,
            input_ids,
            token_type_ids,
            encoder_hidden_states,
            encoder_attention_mask,
        )

132
133

@require_flax
Sylvain Gugger's avatar
Sylvain Gugger committed
134
class FlaxRobertaModelTest(FlaxModelTesterMixin, unittest.TestCase):
135
136
    test_head_masking = True

137
138
139
    all_model_classes = (
        (
            FlaxRobertaModel,
140
            FlaxRobertaForCausalLM,
141
142
143
144
145
146
147
148
149
            FlaxRobertaForMaskedLM,
            FlaxRobertaForSequenceClassification,
            FlaxRobertaForTokenClassification,
            FlaxRobertaForMultipleChoice,
            FlaxRobertaForQuestionAnswering,
        )
        if is_flax_available()
        else ()
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
150
151
152

    def setUp(self):
        self.model_tester = FlaxRobertaModelTester(self)
153
154
155
156

    @slow
    def test_model_from_pretrained(self):
        for model_class_name in self.all_model_classes:
157
            model = model_class_name.from_pretrained("FacebookAI/roberta-base", from_pt=True)
158
159
            outputs = model(np.ones((1, 1)))
            self.assertIsNotNone(outputs)