test_modeling_distilbert.py 10.2 KB
Newer Older
LysandreJik's avatar
LysandreJik committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

LysandreJik's avatar
LysandreJik committed
16

17
18
import unittest

19
from transformers import is_torch_available
thomwolf's avatar
thomwolf committed
20

21
from .test_configuration_common import ConfigTester
22
from .test_modeling_common import ModelTesterMixin, ids_tensor
23
from .utils import require_torch, torch_device
Aymeric Augustin's avatar
Aymeric Augustin committed
24
25


26
if is_torch_available():
27
28
29
30
31
32
33
34
35
    from transformers import (
        DistilBertConfig,
        DistilBertModel,
        DistilBertForMaskedLM,
        DistilBertForTokenClassification,
        DistilBertForQuestionAnswering,
        DistilBertForSequenceClassification,
    )

LysandreJik's avatar
LysandreJik committed
36

37
@require_torch
38
class DistilBertModelTest(ModelTesterMixin, unittest.TestCase):
LysandreJik's avatar
LysandreJik committed
39

40
41
42
43
44
    all_model_classes = (
        (DistilBertModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DistilBertForSequenceClassification)
        if is_torch_available()
        else None
    )
45
46
47
48
    test_pruning = True
    test_torchscript = True
    test_resize_embeddings = True
    test_head_masking = True
LysandreJik's avatar
LysandreJik committed
49

thomwolf's avatar
thomwolf committed
50
    class DistilBertModelTester(object):
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
        def __init__(
            self,
            parent,
            batch_size=13,
            seq_length=7,
            is_training=True,
            use_input_mask=True,
            use_token_type_ids=False,
            use_labels=True,
            vocab_size=99,
            hidden_size=32,
            num_hidden_layers=5,
            num_attention_heads=4,
            intermediate_size=37,
            hidden_act="gelu",
            hidden_dropout_prob=0.1,
            attention_probs_dropout_prob=0.1,
            max_position_embeddings=512,
            type_vocab_size=16,
            type_sequence_label_size=2,
            initializer_range=0.02,
            num_labels=3,
            num_choices=4,
            scope=None,
        ):
LysandreJik's avatar
LysandreJik committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.is_training = is_training
            self.use_input_mask = use_input_mask
            self.use_token_type_ids = use_token_type_ids
            self.use_labels = use_labels
            self.vocab_size = vocab_size
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.intermediate_size = intermediate_size
            self.hidden_act = hidden_act
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
            self.type_sequence_label_size = type_sequence_label_size
            self.initializer_range = initializer_range
            self.num_labels = num_labels
            self.num_choices = num_choices
            self.scope = scope

        def prepare_config_and_inputs(self):
            input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

            input_mask = None
            if self.use_input_mask:
                input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

            sequence_labels = None
            token_labels = None
            choice_labels = None
            if self.use_labels:
                sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
                token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
                choice_labels = ids_tensor([self.batch_size], self.num_choices)

thomwolf's avatar
thomwolf committed
114
            config = DistilBertConfig(
thomwolf's avatar
thomwolf committed
115
                vocab_size=self.vocab_size,
LysandreJik's avatar
LysandreJik committed
116
117
118
119
120
121
122
123
                dim=self.hidden_size,
                n_layers=self.num_hidden_layers,
                n_heads=self.num_attention_heads,
                hidden_dim=self.intermediate_size,
                hidden_act=self.hidden_act,
                dropout=self.hidden_dropout_prob,
                attention_dropout=self.attention_probs_dropout_prob,
                max_position_embeddings=self.max_position_embeddings,
124
125
                initializer_range=self.initializer_range,
            )
LysandreJik's avatar
LysandreJik committed
126
127
128
129

            return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels

        def check_loss_output(self, result):
130
            self.parent.assertListEqual(list(result["loss"].size()), [])
LysandreJik's avatar
LysandreJik committed
131

132
133
134
        def create_and_check_distilbert_model(
            self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
135
            model = DistilBertModel(config=config)
136
            model.to(torch_device)
LysandreJik's avatar
LysandreJik committed
137
            model.eval()
138
139
            (sequence_output,) = model(input_ids, input_mask)
            (sequence_output,) = model(input_ids)
LysandreJik's avatar
LysandreJik committed
140
141
142
143
144

            result = {
                "sequence_output": sequence_output,
            }
            self.parent.assertListEqual(
145
146
                list(result["sequence_output"].size()), [self.batch_size, self.seq_length, self.hidden_size]
            )
LysandreJik's avatar
LysandreJik committed
147

148
149
150
        def create_and_check_distilbert_for_masked_lm(
            self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
151
            model = DistilBertForMaskedLM(config=config)
152
            model.to(torch_device)
LysandreJik's avatar
LysandreJik committed
153
            model.eval()
154
            loss, prediction_scores = model(input_ids, attention_mask=input_mask, labels=token_labels)
LysandreJik's avatar
LysandreJik committed
155
156
157
158
159
            result = {
                "loss": loss,
                "prediction_scores": prediction_scores,
            }
            self.parent.assertListEqual(
160
161
                list(result["prediction_scores"].size()), [self.batch_size, self.seq_length, self.vocab_size]
            )
LysandreJik's avatar
LysandreJik committed
162
163
            self.check_loss_output(result)

164
165
166
        def create_and_check_distilbert_for_question_answering(
            self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
167
            model = DistilBertForQuestionAnswering(config=config)
168
            model.to(torch_device)
LysandreJik's avatar
LysandreJik committed
169
            model.eval()
170
171
172
            loss, start_logits, end_logits = model(
                input_ids, attention_mask=input_mask, start_positions=sequence_labels, end_positions=sequence_labels
            )
LysandreJik's avatar
LysandreJik committed
173
174
175
176
177
            result = {
                "loss": loss,
                "start_logits": start_logits,
                "end_logits": end_logits,
            }
178
179
            self.parent.assertListEqual(list(result["start_logits"].size()), [self.batch_size, self.seq_length])
            self.parent.assertListEqual(list(result["end_logits"].size()), [self.batch_size, self.seq_length])
LysandreJik's avatar
LysandreJik committed
180
181
            self.check_loss_output(result)

182
183
184
        def create_and_check_distilbert_for_sequence_classification(
            self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
LysandreJik's avatar
LysandreJik committed
185
            config.num_labels = self.num_labels
thomwolf's avatar
thomwolf committed
186
            model = DistilBertForSequenceClassification(config)
187
            model.to(torch_device)
LysandreJik's avatar
LysandreJik committed
188
            model.eval()
189
            loss, logits = model(input_ids, attention_mask=input_mask, labels=sequence_labels)
LysandreJik's avatar
LysandreJik committed
190
191
192
193
            result = {
                "loss": loss,
                "logits": logits,
            }
194
            self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.num_labels])
LysandreJik's avatar
LysandreJik committed
195
196
            self.check_loss_output(result)

197
198
199
        def create_and_check_distilbert_for_token_classification(
            self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
200
201
            config.num_labels = self.num_labels
            model = DistilBertForTokenClassification(config=config)
202
            model.to(torch_device)
203
204
205
206
207
208
209
210
            model.eval()

            loss, logits = model(input_ids, attention_mask=input_mask, labels=token_labels)
            result = {
                "loss": loss,
                "logits": logits,
            }
            self.parent.assertListEqual(
211
212
                list(result["logits"].size()), [self.batch_size, self.seq_length, self.num_labels]
            )
213
214
            self.check_loss_output(result)

LysandreJik's avatar
LysandreJik committed
215
216
217
        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()
            (config, input_ids, input_mask, sequence_labels, token_labels, choice_labels) = config_and_inputs
218
            inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
LysandreJik's avatar
LysandreJik committed
219
220
221
            return config, inputs_dict

    def setUp(self):
thomwolf's avatar
thomwolf committed
222
223
        self.model_tester = DistilBertModelTest.DistilBertModelTester(self)
        self.config_tester = ConfigTester(self, config_class=DistilBertConfig, dim=37)
LysandreJik's avatar
LysandreJik committed
224
225
226
227

    def test_config(self):
        self.config_tester.run_common_tests()

thomwolf's avatar
thomwolf committed
228
    def test_distilbert_model(self):
LysandreJik's avatar
LysandreJik committed
229
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
thomwolf's avatar
thomwolf committed
230
        self.model_tester.create_and_check_distilbert_model(*config_and_inputs)
LysandreJik's avatar
LysandreJik committed
231
232
233

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
thomwolf's avatar
thomwolf committed
234
        self.model_tester.create_and_check_distilbert_for_masked_lm(*config_and_inputs)
LysandreJik's avatar
LysandreJik committed
235
236
237

    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
thomwolf's avatar
thomwolf committed
238
        self.model_tester.create_and_check_distilbert_for_question_answering(*config_and_inputs)
LysandreJik's avatar
LysandreJik committed
239
240
241

    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
thomwolf's avatar
thomwolf committed
242
        self.model_tester.create_and_check_distilbert_for_sequence_classification(*config_and_inputs)
LysandreJik's avatar
LysandreJik committed
243

244
245
246
247
    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_distilbert_for_token_classification(*config_and_inputs)

248
    # @slow
LysandreJik's avatar
LysandreJik committed
249
    # def test_model_from_pretrained(self):
250
    #     for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
251
    #         model = DistilBertModel.from_pretrained(model_name)
LysandreJik's avatar
LysandreJik committed
252
    #         self.assertIsNotNone(model)