"test/vscode:/vscode.git/clone" did not exist on "015d1ac40d0e7aaff0351fa4cf79cbc7726c7030"
test_pipelines.py 16.3 KB
Newer Older
1
import unittest
Julien Chaumond's avatar
Julien Chaumond committed
2
from typing import Iterable, List, Optional
Morgan Funtowicz's avatar
Morgan Funtowicz committed
3
4

from transformers import pipeline
Patrick von Platen's avatar
Patrick von Platen committed
5
from transformers.pipelines import Pipeline
6

Lysandre Debut's avatar
Lysandre Debut committed
7
from .utils import require_tf, require_torch, slow
8

Aymeric Augustin's avatar
Aymeric Augustin committed
9

10
11
QA_FINETUNED_MODELS = [
    (("bert-base-uncased", {"use_fast": False}), "bert-large-uncased-whole-word-masking-finetuned-squad", None),
Patrick von Platen's avatar
Patrick von Platen committed
12
    (("distilbert-base-cased-distilled-squad", {"use_fast": False}), "distilbert-base-cased-distilled-squad", None),
13
]
Morgan Funtowicz's avatar
Morgan Funtowicz committed
14

15
16
TF_QA_FINETUNED_MODELS = [
    (("bert-base-uncased", {"use_fast": False}), "bert-large-uncased-whole-word-masking-finetuned-squad", None),
Patrick von Platen's avatar
Patrick von Platen committed
17
    (("distilbert-base-cased-distilled-squad", {"use_fast": False}), "distilbert-base-cased-distilled-squad", None),
18
]
19
20
21

TF_NER_FINETUNED_MODELS = {
    (
22
        "bert-base-cased",
Julien Chaumond's avatar
Julien Chaumond committed
23
24
        "dbmdz/bert-large-cased-finetuned-conll03-english",
        "dbmdz/bert-large-cased-finetuned-conll03-english",
25
26
27
    )
}

Morgan Funtowicz's avatar
Morgan Funtowicz committed
28
29
NER_FINETUNED_MODELS = {
    (
30
        "bert-base-cased",
Julien Chaumond's avatar
Julien Chaumond committed
31
32
        "dbmdz/bert-large-cased-finetuned-conll03-english",
        "dbmdz/bert-large-cased-finetuned-conll03-english",
Morgan Funtowicz's avatar
Morgan Funtowicz committed
33
34
35
36
    )
}

FEATURE_EXTRACT_FINETUNED_MODELS = {
37
38
    ("bert-base-cased", "bert-base-cased", None),
    # ('xlnet-base-cased', 'xlnet-base-cased', None), # Disabled for now as it crash for TF2
39
    ("distilbert-base-cased", "distilbert-base-cased", None),
Morgan Funtowicz's avatar
Morgan Funtowicz committed
40
}
41

42
TF_FEATURE_EXTRACT_FINETUNED_MODELS = {
43
    # ('xlnet-base-cased', 'xlnet-base-cased', None), # Disabled for now as it crash for TF2
44
    ("distilbert-base-cased", "distilbert-base-cased", None),
45
46
47
48
}

TF_TEXT_CLASSIF_FINETUNED_MODELS = {
    (
49
        "bert-base-uncased",
50
51
        "distilbert-base-uncased-finetuned-sst-2-english",
        "distilbert-base-uncased-finetuned-sst-2-english",
52
53
54
    )
}

Morgan Funtowicz's avatar
Morgan Funtowicz committed
55
56
TEXT_CLASSIF_FINETUNED_MODELS = {
    (
Funtowicz Morgan's avatar
Funtowicz Morgan committed
57
        "distilbert-base-cased",
58
59
        "distilbert-base-uncased-finetuned-sst-2-english",
        "distilbert-base-uncased-finetuned-sst-2-english",
Morgan Funtowicz's avatar
Morgan Funtowicz committed
60
    )
61
62
}

63
64
65
66
67
TEXT_GENERATION_FINETUNED_MODELS = {
    ("gpt2", "gpt2"),
    ("xlnet-base-cased", "xlnet-base-cased"),
}

68
69
70
FILL_MASK_FINETUNED_MODELS = [
    (("distilroberta-base", {"use_fast": False}), "distilroberta-base", None),
]
Julien Chaumond's avatar
Julien Chaumond committed
71

72
73
74
TF_FILL_MASK_FINETUNED_MODELS = [
    (("distilroberta-base", {"use_fast": False}), "distilroberta-base", None),
]
Julien Chaumond's avatar
Julien Chaumond committed
75

76
77
78
79
80
SUMMARIZATION_FINETUNED_MODELS = {
    ("sshleifer/bart-tiny-random", "bart-large-cnn"),
    ("patrickvonplaten/t5-tiny-random", "t5-small"),
}
TF_SUMMARIZATION_FINETUNED_MODELS = {("patrickvonplaten/t5-tiny-random", "t5-small")}
81

82
TRANSLATION_FINETUNED_MODELS = {
83
84
    ("patrickvonplaten/t5-tiny-random", "t5-small", "translation_en_to_de"),
    ("patrickvonplaten/t5-tiny-random", "t5-small", "translation_en_to_ro"),
85
}
86
TF_TRANSLATION_FINETUNED_MODELS = {("patrickvonplaten/t5-tiny-random", "t5-small", "translation_en_to_fr")}
87

88

Morgan Funtowicz's avatar
Morgan Funtowicz committed
89
class MonoColumnInputTestCase(unittest.TestCase):
Julien Chaumond's avatar
Julien Chaumond committed
90
91
92
93
94
95
96
97
98
    def _test_mono_column_pipeline(
        self,
        nlp: Pipeline,
        valid_inputs: List,
        invalid_inputs: List,
        output_keys: Iterable[str],
        expected_multi_result: Optional[List] = None,
        expected_check_keys: Optional[List[str]] = None,
    ):
Morgan Funtowicz's avatar
Morgan Funtowicz committed
99
100
101
102
103
104
105
106
107
108
109
110
        self.assertIsNotNone(nlp)

        mono_result = nlp(valid_inputs[0])
        self.assertIsInstance(mono_result, list)
        self.assertIsInstance(mono_result[0], (dict, list))

        if isinstance(mono_result[0], list):
            mono_result = mono_result[0]

        for key in output_keys:
            self.assertIn(key, mono_result[0])

111
        multi_result = [nlp(input) for input in valid_inputs]
Morgan Funtowicz's avatar
Morgan Funtowicz committed
112
113
114
        self.assertIsInstance(multi_result, list)
        self.assertIsInstance(multi_result[0], (dict, list))

Julien Chaumond's avatar
Julien Chaumond committed
115
116
117
118
119
120
121
        if expected_multi_result is not None:
            for result, expect in zip(multi_result, expected_multi_result):
                for key in expected_check_keys or []:
                    self.assertEqual(
                        set([o[key] for o in result]), set([o[key] for o in expect]),
                    )

Morgan Funtowicz's avatar
Morgan Funtowicz committed
122
123
124
125
126
127
128
129
130
        if isinstance(multi_result[0], list):
            multi_result = multi_result[0]

        for result in multi_result:
            for key in output_keys:
                self.assertIn(key, result)

        self.assertRaises(Exception, nlp, invalid_inputs)

131
    @require_torch
Morgan Funtowicz's avatar
Morgan Funtowicz committed
132
    def test_ner(self):
133
134
        mandatory_keys = {"entity", "word", "score"}
        valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
Morgan Funtowicz's avatar
Morgan Funtowicz committed
135
136
        invalid_inputs = [None]
        for tokenizer, model, config in NER_FINETUNED_MODELS:
137
            nlp = pipeline(task="ner", model=model, config=config, tokenizer=tokenizer)
138
            self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, mandatory_keys)
Morgan Funtowicz's avatar
Morgan Funtowicz committed
139

140
141
    @require_tf
    def test_tf_ner(self):
142
143
        mandatory_keys = {"entity", "word", "score"}
        valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
144
        invalid_inputs = [None]
145
        for tokenizer, model, config in TF_NER_FINETUNED_MODELS:
146
            nlp = pipeline(task="ner", model=model, config=config, tokenizer=tokenizer, framework="tf")
147
            self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, mandatory_keys)
Morgan Funtowicz's avatar
Morgan Funtowicz committed
148

149
    @require_torch
Morgan Funtowicz's avatar
Morgan Funtowicz committed
150
    def test_sentiment_analysis(self):
Julien Chaumond's avatar
Julien Chaumond committed
151
        mandatory_keys = {"label", "score"}
152
        valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
Morgan Funtowicz's avatar
Morgan Funtowicz committed
153
154
        invalid_inputs = [None]
        for tokenizer, model, config in TEXT_CLASSIF_FINETUNED_MODELS:
155
            nlp = pipeline(task="sentiment-analysis", model=model, config=config, tokenizer=tokenizer)
156
            self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, mandatory_keys)
Morgan Funtowicz's avatar
Morgan Funtowicz committed
157

158
159
    @require_tf
    def test_tf_sentiment_analysis(self):
Julien Chaumond's avatar
Julien Chaumond committed
160
        mandatory_keys = {"label", "score"}
161
        valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
162
        invalid_inputs = [None]
163
        for tokenizer, model, config in TF_TEXT_CLASSIF_FINETUNED_MODELS:
164
            nlp = pipeline(task="sentiment-analysis", model=model, config=config, tokenizer=tokenizer, framework="tf")
165
            self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, mandatory_keys)
Morgan Funtowicz's avatar
Morgan Funtowicz committed
166

167
    @require_torch
Julien Chaumond's avatar
Julien Chaumond committed
168
    def test_feature_extraction(self):
169
        valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
Morgan Funtowicz's avatar
Morgan Funtowicz committed
170
171
        invalid_inputs = [None]
        for tokenizer, model, config in FEATURE_EXTRACT_FINETUNED_MODELS:
Julien Chaumond's avatar
Julien Chaumond committed
172
            nlp = pipeline(task="feature-extraction", model=model, config=config, tokenizer=tokenizer)
173
            self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, {})
Morgan Funtowicz's avatar
Morgan Funtowicz committed
174

175
    @require_tf
Julien Chaumond's avatar
Julien Chaumond committed
176
    def test_tf_feature_extraction(self):
177
        valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
178
        invalid_inputs = [None]
179
        for tokenizer, model, config in TF_FEATURE_EXTRACT_FINETUNED_MODELS:
180
            nlp = pipeline(task="feature-extraction", model=model, config=config, tokenizer=tokenizer, framework="tf")
181
            self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, {})
Morgan Funtowicz's avatar
Morgan Funtowicz committed
182

Julien Chaumond's avatar
Julien Chaumond committed
183
184
185
186
187
188
189
190
191
192
    @require_torch
    def test_fill_mask(self):
        mandatory_keys = {"sequence", "score", "token"}
        valid_inputs = [
            "My name is <mask>",
            "The largest city in France is <mask>",
        ]
        invalid_inputs = [None]
        expected_multi_result = [
            [
193
194
                {"sequence": "<s> My name is:</s>", "score": 0.009954338893294334, "token": 35},
                {"sequence": "<s> My name is John</s>", "score": 0.0080940006300807, "token": 610},
Julien Chaumond's avatar
Julien Chaumond committed
195
196
197
            ],
            [
                {
198
199
200
201
202
203
204
                    "sequence": "<s> The largest city in France is Paris</s>",
                    "score": 0.3185044229030609,
                    "token": 2201,
                },
                {
                    "sequence": "<s> The largest city in France is Lyon</s>",
                    "score": 0.21112334728240967,
Julien Chaumond's avatar
Julien Chaumond committed
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
                    "token": 12790,
                },
            ],
        ]
        for tokenizer, model, config in FILL_MASK_FINETUNED_MODELS:
            nlp = pipeline(task="fill-mask", model=model, config=config, tokenizer=tokenizer, topk=2)
            self._test_mono_column_pipeline(
                nlp,
                valid_inputs,
                invalid_inputs,
                mandatory_keys,
                expected_multi_result=expected_multi_result,
                expected_check_keys=["sequence"],
            )

    @require_tf
    def test_tf_fill_mask(self):
        mandatory_keys = {"sequence", "score", "token"}
        valid_inputs = [
            "My name is <mask>",
            "The largest city in France is <mask>",
        ]
        invalid_inputs = [None]
        expected_multi_result = [
            [
230
231
                {"sequence": "<s> My name is:</s>", "score": 0.009954338893294334, "token": 35},
                {"sequence": "<s> My name is John</s>", "score": 0.0080940006300807, "token": 610},
Julien Chaumond's avatar
Julien Chaumond committed
232
233
234
            ],
            [
                {
235
236
237
238
239
240
241
                    "sequence": "<s> The largest city in France is Paris</s>",
                    "score": 0.3185044229030609,
                    "token": 2201,
                },
                {
                    "sequence": "<s> The largest city in France is Lyon</s>",
                    "score": 0.21112334728240967,
Julien Chaumond's avatar
Julien Chaumond committed
242
243
244
245
246
                    "token": 12790,
                },
            ],
        ]
        for tokenizer, model, config in TF_FILL_MASK_FINETUNED_MODELS:
247
            nlp = pipeline(task="fill-mask", model=model, config=config, tokenizer=tokenizer, framework="tf", topk=2)
Julien Chaumond's avatar
Julien Chaumond committed
248
249
250
251
252
253
254
255
256
            self._test_mono_column_pipeline(
                nlp,
                valid_inputs,
                invalid_inputs,
                mandatory_keys,
                expected_multi_result=expected_multi_result,
                expected_check_keys=["sequence"],
            )

257
258
259
260
261
    @require_torch
    def test_summarization(self):
        valid_inputs = ["A string like this", ["list of strings entry 1", "list of strings v2"]]
        invalid_inputs = [4, "<mask>"]
        mandatory_keys = ["summary_text"]
262
263
264
265
266
267
268
269
270
271
272
273
274
275
        for model, tokenizer in SUMMARIZATION_FINETUNED_MODELS:
            nlp = pipeline(task="summarization", model=model, tokenizer=tokenizer)
            self._test_mono_column_pipeline(
                nlp, valid_inputs, invalid_inputs, mandatory_keys,
            )

    @require_tf
    def test_tf_summarization(self):
        valid_inputs = ["A string like this", ["list of strings entry 1", "list of strings v2"]]
        invalid_inputs = [4, "<mask>"]
        mandatory_keys = ["summary_text"]
        for model, tokenizer in TF_SUMMARIZATION_FINETUNED_MODELS:
            nlp = pipeline(task="summarization", model=model, tokenizer=tokenizer, framework="tf")
            self._test_mono_column_pipeline(
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
                nlp, valid_inputs, invalid_inputs, mandatory_keys,
            )

    @require_torch
    def test_translation(self):
        valid_inputs = ["A string like this", ["list of strings entry 1", "list of strings v2"]]
        invalid_inputs = [4, "<mask>"]
        mandatory_keys = ["translation_text"]
        for model, tokenizer, task in TRANSLATION_FINETUNED_MODELS:
            nlp = pipeline(task=task, model=model, tokenizer=tokenizer)
            self._test_mono_column_pipeline(
                nlp, valid_inputs, invalid_inputs, mandatory_keys,
            )

    @require_tf
    def test_tf_translation(self):
        valid_inputs = ["A string like this", ["list of strings entry 1", "list of strings v2"]]
        invalid_inputs = [4, "<mask>"]
        mandatory_keys = ["translation_text"]
        for model, tokenizer, task in TF_TRANSLATION_FINETUNED_MODELS:
            nlp = pipeline(task=task, model=model, tokenizer=tokenizer, framework="tf")
            self._test_mono_column_pipeline(
298
299
                nlp, valid_inputs, invalid_inputs, mandatory_keys,
            )
300

301
302
303
304
305
306
307
308
309
310
    @require_torch
    def test_text_generation(self):
        valid_inputs = ["A string like this", ["list of strings entry 1", "list of strings v2"]]
        invalid_inputs = [None]
        for model, tokenizer in TEXT_GENERATION_FINETUNED_MODELS:
            nlp = pipeline(task="text-generation", model=model, tokenizer=tokenizer, framework="pt")
            self._test_mono_column_pipeline(
                nlp, valid_inputs, invalid_inputs, {},
            )

Morgan Funtowicz's avatar
Morgan Funtowicz committed
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332

class MultiColumnInputTestCase(unittest.TestCase):
    def _test_multicolumn_pipeline(self, nlp, valid_inputs: list, invalid_inputs: list, output_keys: Iterable[str]):
        self.assertIsNotNone(nlp)

        mono_result = nlp(valid_inputs[0])
        self.assertIsInstance(mono_result, dict)

        for key in output_keys:
            self.assertIn(key, mono_result)

        multi_result = nlp(valid_inputs)
        self.assertIsInstance(multi_result, list)
        self.assertIsInstance(multi_result[0], dict)

        for result in multi_result:
            for key in output_keys:
                self.assertIn(key, result)

        self.assertRaises(Exception, nlp, invalid_inputs[0])
        self.assertRaises(Exception, nlp, invalid_inputs)

333
    @require_torch
Morgan Funtowicz's avatar
Morgan Funtowicz committed
334
    def test_question_answering(self):
335
        mandatory_output_keys = {"score", "answer", "start", "end"}
Morgan Funtowicz's avatar
Morgan Funtowicz committed
336
        valid_samples = [
337
            {"question": "Where was HuggingFace founded ?", "context": "HuggingFace was founded in Paris."},
Morgan Funtowicz's avatar
Morgan Funtowicz committed
338
            {
339
340
341
                "question": "In what field is HuggingFace working ?",
                "context": "HuggingFace is a startup based in New-York founded in Paris which is trying to solve NLP.",
            },
Morgan Funtowicz's avatar
Morgan Funtowicz committed
342
343
        ]
        invalid_samples = [
344
345
346
347
            {"question": "", "context": "This is a test to try empty question edge case"},
            {"question": None, "context": "This is a test to try empty question edge case"},
            {"question": "What is does with empty context ?", "context": ""},
            {"question": "What is does with empty context ?", "context": None},
Morgan Funtowicz's avatar
Morgan Funtowicz committed
348
349
350
        ]

        for tokenizer, model, config in QA_FINETUNED_MODELS:
351
            nlp = pipeline(task="question-answering", model=model, config=config, tokenizer=tokenizer)
352
            self._test_multicolumn_pipeline(nlp, valid_samples, invalid_samples, mandatory_output_keys)
Morgan Funtowicz's avatar
Morgan Funtowicz committed
353

354
    @require_tf
Lysandre's avatar
Lysandre committed
355
    @slow
356
    def test_tf_question_answering(self):
357
        mandatory_output_keys = {"score", "answer", "start", "end"}
358
        valid_samples = [
359
            {"question": "Where was HuggingFace founded ?", "context": "HuggingFace was founded in Paris."},
360
            {
361
362
363
                "question": "In what field is HuggingFace working ?",
                "context": "HuggingFace is a startup based in New-York founded in Paris which is trying to solve NLP.",
            },
364
365
        ]
        invalid_samples = [
366
367
368
369
            {"question": "", "context": "This is a test to try empty question edge case"},
            {"question": None, "context": "This is a test to try empty question edge case"},
            {"question": "What is does with empty context ?", "context": ""},
            {"question": "What is does with empty context ?", "context": None},
370
        ]
Morgan Funtowicz's avatar
Morgan Funtowicz committed
371

372
        for tokenizer, model, config in TF_QA_FINETUNED_MODELS:
373
            nlp = pipeline(task="question-answering", model=model, config=config, tokenizer=tokenizer, framework="tf")
374
            self._test_multicolumn_pipeline(nlp, valid_samples, invalid_samples, mandatory_output_keys)
Lysandre Debut's avatar
Lysandre Debut committed
375
376
377
378
379


class PipelineCommonTests(unittest.TestCase):

    pipelines = (
Patrick von Platen's avatar
Patrick von Platen committed
380
381
382
383
384
385
386
387
388
        "ner",
        "feature-extraction",
        "question-answering",
        "fill-mask",
        "summarization",
        "sentiment-analysis",
        "translation_en_to_fr",
        "translation_en_to_de",
        "translation_en_to_ro",
389
        "text-generation",
Lysandre Debut's avatar
Lysandre Debut committed
390
391
392
393
394
395
    )

    @slow
    @require_tf
    def test_tf_defaults(self):
        # Test that pipelines can be correctly loaded without any argument
Patrick von Platen's avatar
Patrick von Platen committed
396
397
398
        for task in self.pipelines:
            with self.subTest(msg="Testing Torch defaults with PyTorch and {}".format(task)):
                pipeline(task, framework="tf")
Lysandre Debut's avatar
Lysandre Debut committed
399
400
401
402
403

    @slow
    @require_torch
    def test_pt_defaults(self):
        # Test that pipelines can be correctly loaded without any argument
Patrick von Platen's avatar
Patrick von Platen committed
404
405
406
        for task in self.pipelines:
            with self.subTest(msg="Testing Torch defaults with PyTorch and {}".format(task)):
                pipeline(task, framework="pt")