test_pipelines.py 12.4 KB
Newer Older
1
import unittest
Julien Chaumond's avatar
Julien Chaumond committed
2
from typing import Iterable, List, Optional
Morgan Funtowicz's avatar
Morgan Funtowicz committed
3
4

from transformers import pipeline
Julien Chaumond's avatar
Julien Chaumond committed
5
from transformers.pipelines import Pipeline
6
7

from .utils import require_tf, require_torch
8

Aymeric Augustin's avatar
Aymeric Augustin committed
9

10
QA_FINETUNED_MODELS = {
11
12
    ("bert-base-uncased", "bert-large-uncased-whole-word-masking-finetuned-squad", None),
    ("bert-base-cased", "bert-large-cased-whole-word-masking-finetuned-squad", None),
VictorSanh's avatar
VictorSanh committed
13
    ("bert-base-cased", "distilbert-base-cased-distilled-squad", None),
Morgan Funtowicz's avatar
Morgan Funtowicz committed
14
15
}

16
TF_QA_FINETUNED_MODELS = {
17
18
    ("bert-base-uncased", "bert-large-uncased-whole-word-masking-finetuned-squad", None),
    ("bert-base-cased", "bert-large-cased-whole-word-masking-finetuned-squad", None),
VictorSanh's avatar
VictorSanh committed
19
    ("bert-base-cased", "distilbert-base-cased-distilled-squad", None),
20
21
22
23
}

TF_NER_FINETUNED_MODELS = {
    (
24
        "bert-base-cased",
Julien Chaumond's avatar
Julien Chaumond committed
25
26
        "dbmdz/bert-large-cased-finetuned-conll03-english",
        "dbmdz/bert-large-cased-finetuned-conll03-english",
27
28
29
    )
}

Morgan Funtowicz's avatar
Morgan Funtowicz committed
30
31
NER_FINETUNED_MODELS = {
    (
32
        "bert-base-cased",
Julien Chaumond's avatar
Julien Chaumond committed
33
34
        "dbmdz/bert-large-cased-finetuned-conll03-english",
        "dbmdz/bert-large-cased-finetuned-conll03-english",
Morgan Funtowicz's avatar
Morgan Funtowicz committed
35
36
37
38
    )
}

FEATURE_EXTRACT_FINETUNED_MODELS = {
39
40
    ("bert-base-cased", "bert-base-cased", None),
    # ('xlnet-base-cased', 'xlnet-base-cased', None), # Disabled for now as it crash for TF2
41
    ("distilbert-base-cased", "distilbert-base-cased", None),
Morgan Funtowicz's avatar
Morgan Funtowicz committed
42
}
43

44
TF_FEATURE_EXTRACT_FINETUNED_MODELS = {
45
46
    ("bert-base-cased", "bert-base-cased", None),
    # ('xlnet-base-cased', 'xlnet-base-cased', None), # Disabled for now as it crash for TF2
47
    ("distilbert-base-cased", "distilbert-base-cased", None),
48
49
50
51
}

TF_TEXT_CLASSIF_FINETUNED_MODELS = {
    (
52
        "bert-base-uncased",
53
54
        "distilbert-base-uncased-finetuned-sst-2-english",
        "distilbert-base-uncased-finetuned-sst-2-english",
55
56
57
    )
}

Morgan Funtowicz's avatar
Morgan Funtowicz committed
58
59
TEXT_CLASSIF_FINETUNED_MODELS = {
    (
60
        "bert-base-uncased",
61
62
        "distilbert-base-uncased-finetuned-sst-2-english",
        "distilbert-base-uncased-finetuned-sst-2-english",
Morgan Funtowicz's avatar
Morgan Funtowicz committed
63
    )
64
65
}

Julien Chaumond's avatar
Julien Chaumond committed
66
67
68
69
70
71
72
73
FILL_MASK_FINETUNED_MODELS = {
    ("distilroberta-base", "distilroberta-base", None),
}

TF_FILL_MASK_FINETUNED_MODELS = {
    ("distilroberta-base", "distilroberta-base", None),
}

74

Morgan Funtowicz's avatar
Morgan Funtowicz committed
75
class MonoColumnInputTestCase(unittest.TestCase):
Julien Chaumond's avatar
Julien Chaumond committed
76
77
78
79
80
81
82
83
84
    def _test_mono_column_pipeline(
        self,
        nlp: Pipeline,
        valid_inputs: List,
        invalid_inputs: List,
        output_keys: Iterable[str],
        expected_multi_result: Optional[List] = None,
        expected_check_keys: Optional[List[str]] = None,
    ):
Morgan Funtowicz's avatar
Morgan Funtowicz committed
85
86
87
88
89
90
91
92
93
94
95
96
        self.assertIsNotNone(nlp)

        mono_result = nlp(valid_inputs[0])
        self.assertIsInstance(mono_result, list)
        self.assertIsInstance(mono_result[0], (dict, list))

        if isinstance(mono_result[0], list):
            mono_result = mono_result[0]

        for key in output_keys:
            self.assertIn(key, mono_result[0])

97
        multi_result = [nlp(input) for input in valid_inputs]
Morgan Funtowicz's avatar
Morgan Funtowicz committed
98
99
100
        self.assertIsInstance(multi_result, list)
        self.assertIsInstance(multi_result[0], (dict, list))

Julien Chaumond's avatar
Julien Chaumond committed
101
102
103
104
105
106
107
        if expected_multi_result is not None:
            for result, expect in zip(multi_result, expected_multi_result):
                for key in expected_check_keys or []:
                    self.assertEqual(
                        set([o[key] for o in result]), set([o[key] for o in expect]),
                    )

Morgan Funtowicz's avatar
Morgan Funtowicz committed
108
109
110
111
112
113
114
115
116
        if isinstance(multi_result[0], list):
            multi_result = multi_result[0]

        for result in multi_result:
            for key in output_keys:
                self.assertIn(key, result)

        self.assertRaises(Exception, nlp, invalid_inputs)

117
    @require_torch
Morgan Funtowicz's avatar
Morgan Funtowicz committed
118
    def test_ner(self):
119
120
        mandatory_keys = {"entity", "word", "score"}
        valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
Morgan Funtowicz's avatar
Morgan Funtowicz committed
121
122
        invalid_inputs = [None]
        for tokenizer, model, config in NER_FINETUNED_MODELS:
123
            nlp = pipeline(task="ner", model=model, config=config, tokenizer=tokenizer)
124
            self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, mandatory_keys)
Morgan Funtowicz's avatar
Morgan Funtowicz committed
125

126
127
    @require_tf
    def test_tf_ner(self):
128
129
        mandatory_keys = {"entity", "word", "score"}
        valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
130
        invalid_inputs = [None]
131
        for tokenizer, model, config in TF_NER_FINETUNED_MODELS:
132
            nlp = pipeline(task="ner", model=model, config=config, tokenizer=tokenizer, framework="tf")
133
            self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, mandatory_keys)
Morgan Funtowicz's avatar
Morgan Funtowicz committed
134

135
    @require_torch
Morgan Funtowicz's avatar
Morgan Funtowicz committed
136
    def test_sentiment_analysis(self):
Julien Chaumond's avatar
Julien Chaumond committed
137
        mandatory_keys = {"label", "score"}
138
        valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
Morgan Funtowicz's avatar
Morgan Funtowicz committed
139
140
        invalid_inputs = [None]
        for tokenizer, model, config in TEXT_CLASSIF_FINETUNED_MODELS:
141
            nlp = pipeline(task="sentiment-analysis", model=model, config=config, tokenizer=tokenizer)
142
            self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, mandatory_keys)
Morgan Funtowicz's avatar
Morgan Funtowicz committed
143

144
145
    @require_tf
    def test_tf_sentiment_analysis(self):
Julien Chaumond's avatar
Julien Chaumond committed
146
        mandatory_keys = {"label", "score"}
147
        valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
148
        invalid_inputs = [None]
149
        for tokenizer, model, config in TF_TEXT_CLASSIF_FINETUNED_MODELS:
150
            nlp = pipeline(task="sentiment-analysis", model=model, config=config, tokenizer=tokenizer, framework="tf")
151
            self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, mandatory_keys)
Morgan Funtowicz's avatar
Morgan Funtowicz committed
152

153
    @require_torch
Julien Chaumond's avatar
Julien Chaumond committed
154
    def test_feature_extraction(self):
155
        valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
Morgan Funtowicz's avatar
Morgan Funtowicz committed
156
157
        invalid_inputs = [None]
        for tokenizer, model, config in FEATURE_EXTRACT_FINETUNED_MODELS:
Julien Chaumond's avatar
Julien Chaumond committed
158
            nlp = pipeline(task="feature-extraction", model=model, config=config, tokenizer=tokenizer)
159
            self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, {})
Morgan Funtowicz's avatar
Morgan Funtowicz committed
160

161
    @require_tf
Julien Chaumond's avatar
Julien Chaumond committed
162
    def test_tf_feature_extraction(self):
163
        valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
164
        invalid_inputs = [None]
165
        for tokenizer, model, config in TF_FEATURE_EXTRACT_FINETUNED_MODELS:
166
            nlp = pipeline(task="feature-extraction", model=model, config=config, tokenizer=tokenizer, framework="tf")
167
            self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, {})
Morgan Funtowicz's avatar
Morgan Funtowicz committed
168

Julien Chaumond's avatar
Julien Chaumond committed
169
170
171
172
173
174
175
176
177
178
    @require_torch
    def test_fill_mask(self):
        mandatory_keys = {"sequence", "score", "token"}
        valid_inputs = [
            "My name is <mask>",
            "The largest city in France is <mask>",
        ]
        invalid_inputs = [None]
        expected_multi_result = [
            [
179
180
                {"sequence": "<s> My name is:</s>", "score": 0.009954338893294334, "token": 35},
                {"sequence": "<s> My name is John</s>", "score": 0.0080940006300807, "token": 610},
Julien Chaumond's avatar
Julien Chaumond committed
181
182
183
            ],
            [
                {
184
185
186
187
188
189
190
                    "sequence": "<s> The largest city in France is Paris</s>",
                    "score": 0.3185044229030609,
                    "token": 2201,
                },
                {
                    "sequence": "<s> The largest city in France is Lyon</s>",
                    "score": 0.21112334728240967,
Julien Chaumond's avatar
Julien Chaumond committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
                    "token": 12790,
                },
            ],
        ]
        for tokenizer, model, config in FILL_MASK_FINETUNED_MODELS:
            nlp = pipeline(task="fill-mask", model=model, config=config, tokenizer=tokenizer, topk=2)
            self._test_mono_column_pipeline(
                nlp,
                valid_inputs,
                invalid_inputs,
                mandatory_keys,
                expected_multi_result=expected_multi_result,
                expected_check_keys=["sequence"],
            )

    @require_tf
    def test_tf_fill_mask(self):
        mandatory_keys = {"sequence", "score", "token"}
        valid_inputs = [
            "My name is <mask>",
            "The largest city in France is <mask>",
        ]
        invalid_inputs = [None]
        expected_multi_result = [
            [
216
217
                {"sequence": "<s> My name is:</s>", "score": 0.009954338893294334, "token": 35},
                {"sequence": "<s> My name is John</s>", "score": 0.0080940006300807, "token": 610},
Julien Chaumond's avatar
Julien Chaumond committed
218
219
220
            ],
            [
                {
221
222
223
224
225
226
227
                    "sequence": "<s> The largest city in France is Paris</s>",
                    "score": 0.3185044229030609,
                    "token": 2201,
                },
                {
                    "sequence": "<s> The largest city in France is Lyon</s>",
                    "score": 0.21112334728240967,
Julien Chaumond's avatar
Julien Chaumond committed
228
229
230
231
232
                    "token": 12790,
                },
            ],
        ]
        for tokenizer, model, config in TF_FILL_MASK_FINETUNED_MODELS:
233
            nlp = pipeline(task="fill-mask", model=model, config=config, tokenizer=tokenizer, framework="tf", topk=2)
Julien Chaumond's avatar
Julien Chaumond committed
234
235
236
237
238
239
240
241
242
            self._test_mono_column_pipeline(
                nlp,
                valid_inputs,
                invalid_inputs,
                mandatory_keys,
                expected_multi_result=expected_multi_result,
                expected_check_keys=["sequence"],
            )

Morgan Funtowicz's avatar
Morgan Funtowicz committed
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264

class MultiColumnInputTestCase(unittest.TestCase):
    def _test_multicolumn_pipeline(self, nlp, valid_inputs: list, invalid_inputs: list, output_keys: Iterable[str]):
        self.assertIsNotNone(nlp)

        mono_result = nlp(valid_inputs[0])
        self.assertIsInstance(mono_result, dict)

        for key in output_keys:
            self.assertIn(key, mono_result)

        multi_result = nlp(valid_inputs)
        self.assertIsInstance(multi_result, list)
        self.assertIsInstance(multi_result[0], dict)

        for result in multi_result:
            for key in output_keys:
                self.assertIn(key, result)

        self.assertRaises(Exception, nlp, invalid_inputs[0])
        self.assertRaises(Exception, nlp, invalid_inputs)

265
    @require_torch
Morgan Funtowicz's avatar
Morgan Funtowicz committed
266
    def test_question_answering(self):
267
        mandatory_output_keys = {"score", "answer", "start", "end"}
Morgan Funtowicz's avatar
Morgan Funtowicz committed
268
        valid_samples = [
269
            {"question": "Where was HuggingFace founded ?", "context": "HuggingFace was founded in Paris."},
Morgan Funtowicz's avatar
Morgan Funtowicz committed
270
            {
271
272
273
                "question": "In what field is HuggingFace working ?",
                "context": "HuggingFace is a startup based in New-York founded in Paris which is trying to solve NLP.",
            },
Morgan Funtowicz's avatar
Morgan Funtowicz committed
274
275
        ]
        invalid_samples = [
276
277
278
279
            {"question": "", "context": "This is a test to try empty question edge case"},
            {"question": None, "context": "This is a test to try empty question edge case"},
            {"question": "What is does with empty context ?", "context": ""},
            {"question": "What is does with empty context ?", "context": None},
Morgan Funtowicz's avatar
Morgan Funtowicz committed
280
281
282
        ]

        for tokenizer, model, config in QA_FINETUNED_MODELS:
283
            nlp = pipeline(task="question-answering", model=model, config=config, tokenizer=tokenizer)
284
            self._test_multicolumn_pipeline(nlp, valid_samples, invalid_samples, mandatory_output_keys)
Morgan Funtowicz's avatar
Morgan Funtowicz committed
285

286
    @require_tf
287
    @unittest.skip("This test is failing intermittently. Skipping it until we resolve.")
288
    def test_tf_question_answering(self):
289
        mandatory_output_keys = {"score", "answer", "start", "end"}
290
        valid_samples = [
291
            {"question": "Where was HuggingFace founded ?", "context": "HuggingFace was founded in Paris."},
292
            {
293
294
295
                "question": "In what field is HuggingFace working ?",
                "context": "HuggingFace is a startup based in New-York founded in Paris which is trying to solve NLP.",
            },
296
297
        ]
        invalid_samples = [
298
299
300
301
            {"question": "", "context": "This is a test to try empty question edge case"},
            {"question": None, "context": "This is a test to try empty question edge case"},
            {"question": "What is does with empty context ?", "context": ""},
            {"question": "What is does with empty context ?", "context": None},
302
        ]
Morgan Funtowicz's avatar
Morgan Funtowicz committed
303

304
        for tokenizer, model, config in TF_QA_FINETUNED_MODELS:
305
            nlp = pipeline(task="question-answering", model=model, config=config, tokenizer=tokenizer, framework="tf")
306
            self._test_multicolumn_pipeline(nlp, valid_samples, invalid_samples, mandatory_output_keys)