run_summarization.py 9.75 KB
Newer Older
Rémi Louf's avatar
Rémi Louf committed
1
#! /usr/bin/python3
Rémi Louf's avatar
Rémi Louf committed
2
3
4
5
import argparse
import logging
import os
import sys
Aymeric Augustin's avatar
Aymeric Augustin committed
6
from collections import namedtuple
Rémi Louf's avatar
Rémi Louf committed
7
8
9
10
11
12

import torch
from torch.utils.data import DataLoader, SequentialSampler
from tqdm import tqdm

from modeling_bertabs import BertAbs, build_predictor
Aymeric Augustin's avatar
Aymeric Augustin committed
13
from transformers import BertTokenizer
Rémi Louf's avatar
Rémi Louf committed
14
15
16
17
from utils_summarization import (
    SummarizationDataset,
    build_mask,
    compute_token_type_ids,
Aymeric Augustin's avatar
Aymeric Augustin committed
18
19
    encode_for_summarization,
    fit_to_block_size,
Rémi Louf's avatar
Rémi Louf committed
20
21
)

Aymeric Augustin's avatar
Aymeric Augustin committed
22

Rémi Louf's avatar
Rémi Louf committed
23
24
25
26
logger = logging.getLogger(__name__)
logging.basicConfig(stream=sys.stdout, level=logging.INFO)


27
Batch = namedtuple("Batch", ["document_names", "batch_size", "src", "segs", "mask_src", "tgt_str"])
Rémi Louf's avatar
Rémi Louf committed
28
29
30
31


def evaluate(args):
    tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", do_lower_case=True)
32
33
34
    model = BertAbs.from_pretrained("bertabs-finetuned-cnndm")
    model.to(args.device)
    model.eval()
Rémi Louf's avatar
Rémi Louf committed
35
36
37
38
39
40
41

    symbols = {
        "BOS": tokenizer.vocab["[unused0]"],
        "EOS": tokenizer.vocab["[unused1]"],
        "PAD": tokenizer.vocab["[PAD]"],
    }

Rémi Louf's avatar
Rémi Louf committed
42
43
44
45
46
47
    if args.compute_rouge:
        reference_summaries = []
        generated_summaries = []

        import rouge
        import nltk
48
49

        nltk.download("punkt")
Rémi Louf's avatar
Rémi Louf committed
50
        rouge_evaluator = rouge.Rouge(
51
            metrics=["rouge-n", "rouge-l"],
Rémi Louf's avatar
Rémi Louf committed
52
53
54
            max_n=2,
            limit_length=True,
            length_limit=args.beam_size,
55
            length_limit_type="words",
Rémi Louf's avatar
Rémi Louf committed
56
57
58
59
60
61
62
            apply_avg=True,
            apply_best=False,
            alpha=0.5,  # Default F1_score
            weight_factor=1.2,
            stemming=True,
        )

Rémi Louf's avatar
Rémi Louf committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
    # these (unused) arguments are defined to keep the compatibility
    # with the legacy code and will be deleted in a next iteration.
    args.result_path = ""
    args.temp_dir = ""

    data_iterator = build_data_iterator(args, tokenizer)
    predictor = build_predictor(args, tokenizer, symbols, model)

    logger.info("***** Running evaluation *****")
    logger.info("  Number examples = %d", len(data_iterator.dataset))
    logger.info("  Batch size = %d", args.batch_size)
    logger.info("")
    logger.info("***** Beam Search parameters *****")
    logger.info("  Beam size = %d", args.beam_size)
    logger.info("  Minimum length = %d", args.min_length)
    logger.info("  Maximum length = %d", args.max_length)
    logger.info("  Alpha (length penalty) = %.2f", args.alpha)
    logger.info("  Trigrams %s be blocked", ("will" if args.block_trigram else "will NOT"))

    for batch in tqdm(data_iterator):
        batch_data = predictor.translate_batch(batch)
        translations = predictor.from_batch(batch_data)
        summaries = [format_summary(t) for t in translations]
        save_summaries(summaries, args.summaries_output_dir, batch.document_names)

Rémi Louf's avatar
Rémi Louf committed
88
89
90
91
92
93
94
95
96
97
        if args.compute_rouge:
            reference_summaries += batch.tgt_str
            generated_summaries += summaries

    if args.compute_rouge:
        scores = rouge_evaluator.get_scores(generated_summaries, reference_summaries)
        str_scores = format_rouge_scores(scores)
        save_rouge_scores(str_scores)
        print(str_scores)

Rémi Louf's avatar
Rémi Louf committed
98

Rémi Louf's avatar
Rémi Louf committed
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
def save_summaries(summaries, path, original_document_name):
    """ Write the summaries in fies that are prefixed by the original
    files' name with the `_summary` appended.

    Attributes:
        original_document_names: List[string]
            Name of the document that was summarized.
        path: string
            Path were the summaries will be written
        summaries: List[string]
            The summaries that we produced.
    """
    for summary, document_name in zip(summaries, original_document_name):
        # Prepare the summary file's name
        if "." in document_name:
            bare_document_name = ".".join(document_name.split(".")[:-1])
            extension = document_name.split(".")[-1]
            name = bare_document_name + "_summary." + extension
        else:
            name = document_name + "_summary"

        file_path = os.path.join(path, name)
        with open(file_path, "w") as output:
            output.write(summary)


Rémi Louf's avatar
Rémi Louf committed
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
def format_summary(translation):
    """ Transforms the output of the `from_batch` function
    into nicely formatted summaries.
    """
    raw_summary, _, _ = translation
    summary = (
        raw_summary.replace("[unused0]", "")
        .replace("[unused3]", "")
        .replace("[PAD]", "")
        .replace("[unused1]", "")
        .replace(r" +", " ")
        .replace(" [unused2] ", ". ")
        .replace("[unused2]", "")
        .strip()
    )

    return summary


Rémi Louf's avatar
Rémi Louf committed
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
def format_rouge_scores(scores):
    return """\n
****** ROUGE SCORES ******

** ROUGE 1
F1        >> {:.3f}
Precision >> {:.3f}
Recall    >> {:.3f}

** ROUGE 2
F1        >> {:.3f}
Precision >> {:.3f}
Recall    >> {:.3f}

** ROUGE L
F1        >> {:.3f}
Precision >> {:.3f}
Recall    >> {:.3f}""".format(
162
163
164
165
166
167
168
169
170
        scores["rouge-1"]["f"],
        scores["rouge-1"]["p"],
        scores["rouge-1"]["r"],
        scores["rouge-2"]["f"],
        scores["rouge-2"]["p"],
        scores["rouge-2"]["r"],
        scores["rouge-l"]["f"],
        scores["rouge-l"]["p"],
        scores["rouge-l"]["r"],
Rémi Louf's avatar
Rémi Louf committed
171
172
173
174
175
176
177
178
    )


def save_rouge_scores(str_scores):
    with open("rouge_scores.txt", "w") as output:
        output.write(str_scores)


Rémi Louf's avatar
Rémi Louf committed
179
180
181
182
183
184
185
186
#
# LOAD the dataset
#


def build_data_iterator(args, tokenizer):
    dataset = load_and_cache_examples(args, tokenizer)
    sampler = SequentialSampler(dataset)
Rémi Louf's avatar
Rémi Louf committed
187
    collate_fn = lambda data: collate(data, tokenizer, block_size=512, device=args.device)
188
    iterator = DataLoader(dataset, sampler=sampler, batch_size=args.batch_size, collate_fn=collate_fn,)
Rémi Louf's avatar
Rémi Louf committed
189
190
191
192
193
194
195
196
197

    return iterator


def load_and_cache_examples(args, tokenizer):
    dataset = SummarizationDataset(args.documents_dir)
    return dataset


Rémi Louf's avatar
Rémi Louf committed
198
def collate(data, tokenizer, block_size, device):
Rémi Louf's avatar
Rémi Louf committed
199
200
201
202
203
204
205
206
    """ Collate formats the data passed to the data loader.

    In particular we tokenize the data batch after batch to avoid keeping them
    all in memory. We output the data as a namedtuple to fit the original BertAbs's
    API.
    """
    data = [x for x in data if not len(x[1]) == 0]  # remove empty_files
    names = [name for name, _, _ in data]
Rémi Louf's avatar
Rémi Louf committed
207
    summaries = [" ".join(summary_list) for _, _, summary_list in data]
Rémi Louf's avatar
Rémi Louf committed
208

209
    encoded_text = [encode_for_summarization(story, summary, tokenizer) for _, story, summary in data]
Rémi Louf's avatar
Rémi Louf committed
210
    encoded_stories = torch.tensor(
211
        [fit_to_block_size(story, block_size, tokenizer.pad_token_id) for story, _ in encoded_text]
Rémi Louf's avatar
Rémi Louf committed
212
    )
Rémi Louf's avatar
Rémi Louf committed
213
214
    encoder_token_type_ids = compute_token_type_ids(encoded_stories, tokenizer.cls_token_id)
    encoder_mask = build_mask(encoded_stories, tokenizer.pad_token_id)
Rémi Louf's avatar
Rémi Louf committed
215
216
217

    batch = Batch(
        document_names=names,
Rémi Louf's avatar
Rémi Louf committed
218
        batch_size=len(encoded_stories),
Rémi Louf's avatar
Rémi Louf committed
219
220
221
        src=encoded_stories.to(device),
        segs=encoder_token_type_ids.to(device),
        mask_src=encoder_mask.to(device),
Rémi Louf's avatar
Rémi Louf committed
222
        tgt_str=summaries,
Rémi Louf's avatar
Rémi Louf committed
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
    )

    return batch


def decode_summary(summary_tokens, tokenizer):
    """ Decode the summary and return it in a format
    suitable for evaluation.
    """
    summary_tokens = summary_tokens.to("cpu").numpy()
    summary = tokenizer.decode(summary_tokens)
    sentences = summary.split(".")
    sentences = [s + "." for s in sentences]
    return sentences


def main():
    """ The main function defines the interface with the users.
    """
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--documents_dir",
        default=None,
        type=str,
        required=True,
        help="The folder where the documents to summarize are located.",
    )
    parser.add_argument(
        "--summaries_output_dir",
        default=None,
        type=str,
254
255
        required=False,
        help="The folder in wich the summaries should be written. Defaults to the folder where the documents are",
Rémi Louf's avatar
Rémi Louf committed
256
    )
Rémi Louf's avatar
Rémi Louf committed
257
258
259
260
261
262
263
    parser.add_argument(
        "--compute_rouge",
        default=False,
        type=bool,
        required=False,
        help="Compute the ROUGE metrics during evaluation. Only available for the CNN/DailyMail dataset.",
    )
Rémi Louf's avatar
Rémi Louf committed
264
265
    # EVALUATION options
    parser.add_argument(
266
        "--no_cuda", default=False, type=bool, help="Whether to force the execution on CPU.",
Rémi Louf's avatar
Rémi Louf committed
267
268
269
270
271
272
    )
    parser.add_argument(
        "--batch_size", default=4, type=int, help="Batch size per GPU/CPU for training.",
    )
    # BEAM SEARCH arguments
    parser.add_argument(
273
        "--min_length", default=50, type=int, help="Minimum number of tokens for the summaries.",
Rémi Louf's avatar
Rémi Louf committed
274
275
    )
    parser.add_argument(
276
        "--max_length", default=200, type=int, help="Maixmum number of tokens for the summaries.",
Rémi Louf's avatar
Rémi Louf committed
277
278
    )
    parser.add_argument(
279
        "--beam_size", default=5, type=int, help="The number of beams to start with for each example.",
Rémi Louf's avatar
Rémi Louf committed
280
281
    )
    parser.add_argument(
282
        "--alpha", default=0.95, type=float, help="The value of alpha for the length penalty in the beam search.",
Rémi Louf's avatar
Rémi Louf committed
283
284
285
286
287
288
289
290
291
    )
    parser.add_argument(
        "--block_trigram",
        default=True,
        type=bool,
        help="Whether to block the existence of repeating trigrams in the text generated by beam search.",
    )
    args = parser.parse_args()

Rémi Louf's avatar
Rémi Louf committed
292
    # Select device (distibuted not available)
293
    args.device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
Rémi Louf's avatar
Rémi Louf committed
294
295

    # Check the existence of directories
296
297
298
    if not args.summaries_output_dir:
        args.summaries_output_dir = args.documents_dir

Rémi Louf's avatar
Rémi Louf committed
299
300
301
302
    if not documents_dir_is_valid(args.documents_dir):
        raise FileNotFoundError(
            "We could not find the directory you specified for the documents to summarize, or it was empty. Please specify a valid path."
        )
Rémi Louf's avatar
Rémi Louf committed
303
    os.makedirs(args.summaries_output_dir, exist_ok=True)
Rémi Louf's avatar
Rémi Louf committed
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320

    evaluate(args)


def documents_dir_is_valid(path):
    if not os.path.exists(path):
        return False

    file_list = os.listdir(path)
    if len(file_list) == 0:
        return False

    return True


if __name__ == "__main__":
    main()