run_summarization.py 7.86 KB
Newer Older
R茅mi Louf's avatar
R茅mi Louf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import argparse
from collections import namedtuple
import logging
import os
import sys

import torch
from torch.utils.data import DataLoader, SequentialSampler
from tqdm import tqdm

from transformers import BertTokenizer

from modeling_bertabs import BertAbs, build_predictor

from utils_summarization import (
    SummarizationDataset,
    encode_for_summarization,
    build_mask,
    fit_to_block_size,
    compute_token_type_ids,
)

logger = logging.getLogger(__name__)
logging.basicConfig(stream=sys.stdout, level=logging.INFO)


Batch = namedtuple(
    "Batch", ["document_names", "batch_size", "src", "segs", "mask_src", "tgt_str"]
)


def evaluate(args):
    tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", do_lower_case=True)
    model = bertabs = BertAbs.from_pretrained(
        "bertabs-finetuned-{}".format(args.finetuned_model)
    )
    bertabs.to(args.device)
    bertabs.eval()

    symbols = {
        "BOS": tokenizer.vocab["[unused0]"],
        "EOS": tokenizer.vocab["[unused1]"],
        "PAD": tokenizer.vocab["[PAD]"],
    }

    # these (unused) arguments are defined to keep the compatibility
    # with the legacy code and will be deleted in a next iteration.
    args.result_path = ""
    args.temp_dir = ""

    data_iterator = build_data_iterator(args, tokenizer)
    predictor = build_predictor(args, tokenizer, symbols, model)

    logger.info("***** Running evaluation *****")
    logger.info("  Number examples = %d", len(data_iterator.dataset))
    logger.info("  Batch size = %d", args.batch_size)
    logger.info("")
    logger.info("***** Beam Search parameters *****")
    logger.info("  Beam size = %d", args.beam_size)
    logger.info("  Minimum length = %d", args.min_length)
    logger.info("  Maximum length = %d", args.max_length)
    logger.info("  Alpha (length penalty) = %.2f", args.alpha)
    logger.info("  Trigrams %s be blocked", ("will" if args.block_trigram else "will NOT"))

    for batch in tqdm(data_iterator):
        batch_data = predictor.translate_batch(batch)
        translations = predictor.from_batch(batch_data)
        summaries = [format_summary(t) for t in translations]
        save_summaries(summaries, args.summaries_output_dir, batch.document_names)


def format_summary(translation):
    """ Transforms the output of the `from_batch` function
    into nicely formatted summaries.
    """
    raw_summary, _, _ = translation
    summary = (
        raw_summary.replace("[unused0]", "")
        .replace("[unused3]", "")
        .replace("[PAD]", "")
        .replace("[unused1]", "")
        .replace(r" +", " ")
        .replace(" [unused2] ", ". ")
        .replace("[unused2]", "")
        .strip()
    )

    return summary


def save_summaries(summaries, path, original_document_name):
    """ Write the summaries in fies that are prefixed by the original
    files' name with the `_summary` appended.

    Attributes:
        original_document_names: List[string]
            Name of the document that was summarized.
        path: string
            Path were the summaries will be written
        summaries: List[string]
            The summaries that we produced.
    """
    for summary, document_name in zip(summaries, original_document_name):
        # Prepare the summary file's name
        if "." in document_name:
            bare_document_name = ".".join(document_name.split(".")[:-1])
            extension = document_name.split(".")[-1]
            name = bare_document_name + "_summary." + extension
        else:
            name = document_name + "_summary"

        file_path = os.path.join(path, name)
        with open(file_path, "w") as output:
            output.write(summary)


#
# LOAD the dataset
#


def build_data_iterator(args, tokenizer):
    dataset = load_and_cache_examples(args, tokenizer)
    sampler = SequentialSampler(dataset)
    collate_fn = lambda data: collate(data, tokenizer, block_size=512)
    iterator = DataLoader(
        dataset, sampler=sampler, batch_size=args.batch_size, collate_fn=collate_fn,
    )

    return iterator


def load_and_cache_examples(args, tokenizer):
    dataset = SummarizationDataset(args.documents_dir)
    return dataset


def collate(data, tokenizer, block_size):
    """ Collate formats the data passed to the data loader.

    In particular we tokenize the data batch after batch to avoid keeping them
    all in memory. We output the data as a namedtuple to fit the original BertAbs's
    API.
    """
    data = [x for x in data if not len(x[1]) == 0]  # remove empty_files
    names = [name for name, _, _ in data]

    encoded_text = [
        encode_for_summarization(story, summary, tokenizer) for _, story, summary in data
    ]
    stories = torch.tensor(
        [
            fit_to_block_size(story, block_size, tokenizer.pad_token_id)
            for story, _ in encoded_text
        ]
    )
    encoder_token_type_ids = compute_token_type_ids(stories, tokenizer.cls_token_id)
    encoder_mask = build_mask(stories, tokenizer.pad_token_id)

    batch = Batch(
        document_names=names,
        batch_size=len(stories),
        src=stories,
        segs=encoder_token_type_ids,
        mask_src=encoder_mask,
        tgt_str=[""] * len(stories),
    )

    return batch


def decode_summary(summary_tokens, tokenizer):
    """ Decode the summary and return it in a format
    suitable for evaluation.
    """
    summary_tokens = summary_tokens.to("cpu").numpy()
    summary = tokenizer.decode(summary_tokens)
    sentences = summary.split(".")
    sentences = [s + "." for s in sentences]
    return sentences


def main():
    """ The main function defines the interface with the users.
    """
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--documents_dir",
        default=None,
        type=str,
        required=True,
        help="The folder where the documents to summarize are located.",
    )
    parser.add_argument(
        "--summaries_output_dir",
        default=None,
        type=str,
        required=True,
        help="The folder in wich the summaries should be written.",
    )
    # EVALUATION options
    parser.add_argument(
        "--visible_gpus",
        default=-1,
        type=int,
        help="Number of GPUs with which to do the training.",
    )
    parser.add_argument(
        "--batch_size", default=4, type=int, help="Batch size per GPU/CPU for training.",
    )
    # BEAM SEARCH arguments
    parser.add_argument(
        "--min_length",
        default=50,
        type=int,
        help="Minimum number of tokens for the summaries.",
    )
    parser.add_argument(
        "--max_length",
        default=200,
        type=int,
        help="Maixmum number of tokens for the summaries.",
    )
    parser.add_argument(
        "--beam_size",
        default=5,
        type=int,
        help="The number of beams to start with for each example.",
    )
    parser.add_argument(
        "--alpha",
        default=0.95,
        type=float,
        help="The value of alpha for the length penalty in the beam search.",
    )
    parser.add_argument(
        "--block_trigram",
        default=True,
        type=bool,
        help="Whether to block the existence of repeating trigrams in the text generated by beam search.",
    )
    args = parser.parse_args()
    args.device = torch.device("cpu") if args.visible_gpus == -1 else torch.device("cuda")

    if not documents_dir_is_valid(args.documents_dir):
        raise FileNotFoundError(
            "We could not find the directory you specified for the documents to summarize, or it was empty. Please specify a valid path."
        )
    maybe_create_output_dir(args.summaries_output_dir)

    evaluate(args)


def documents_dir_is_valid(path):
    if not os.path.exists(path):
        return False

    file_list = os.listdir(path)
    if len(file_list) == 0:
        return False

    return True


def maybe_create_output_dir(path):
    if not os.path.exists(path):
        os.makedirs(path)


if __name__ == "__main__":
    main()