"official/vision/beta/__init__.py" did not exist on "24501315d2a559876215b62b080397cea3a66b97"
modeling_distilbert.py 36.4 KB
Newer Older
VictorSanh's avatar
wip  
VictorSanh committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc.
VictorSanh's avatar
wip  
VictorSanh committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
thomwolf's avatar
thomwolf committed
15
16
17
""" PyTorch DistilBERT model
    adapted in part from Facebook, Inc XLM model (https://github.com/facebookresearch/XLM)
    and in part from HuggingFace PyTorch version of Google AI Bert model (https://github.com/google-research/bert)
VictorSanh's avatar
wip  
VictorSanh committed
18
19
20
21
22
23
"""
from __future__ import absolute_import, division, print_function, unicode_literals

import json
import logging
import math
VictorSanh's avatar
VictorSanh committed
24
import copy
VictorSanh's avatar
wip  
VictorSanh committed
25
26
27
28
29
30
31
32
33
import sys
from io import open

import itertools
import numpy as np

import torch
import torch.nn as nn

34
from pytorch_transformers.modeling_utils import PretrainedConfig, PreTrainedModel, add_start_docstrings, prune_linear_layer
VictorSanh's avatar
wip  
VictorSanh committed
35
36
37
38
39

import logging
logger = logging.getLogger(__name__)


thomwolf's avatar
thomwolf committed
40
41
42
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP = {
    'distilbert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/distilbert-base-uncased-pytorch_model.bin",
    'distilbert-base-uncased-distilled-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/distilbert-base-uncased-distilled-squad-pytorch_model.bin"
VictorSanh's avatar
wip  
VictorSanh committed
43
44
}

thomwolf's avatar
thomwolf committed
45
46
47
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    'distilbert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/distilbert-base-uncased-config.json",
    'distilbert-base-uncased-distilled-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/distilbert-base-uncased-distilled-squad-config.json"
VictorSanh's avatar
wip  
VictorSanh committed
48
49
50
}


thomwolf's avatar
thomwolf committed
51
52
class DistilBertConfig(PretrainedConfig):
    pretrained_config_archive_map = DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP
VictorSanh's avatar
wip  
VictorSanh committed
53
54
55
56
57
58
59
60

    def __init__(self,
                 vocab_size_or_config_json_file=30522,
                 max_position_embeddings=512,
                 sinusoidal_pos_embds=True,
                 n_layers=6,
                 n_heads=12,
                 dim=768,
VictorSanh's avatar
VictorSanh committed
61
                 hidden_dim=4*768,
VictorSanh's avatar
wip  
VictorSanh committed
62
63
64
65
                 dropout=0.1,
                 attention_dropout=0.1,
                 activation='gelu',
                 initializer_range=0.02,
VictorSanh's avatar
VictorSanh committed
66
                 tie_weights_=True,
67
68
                 qa_dropout=0.1,
                 seq_classif_dropout=0.2,
VictorSanh's avatar
wip  
VictorSanh committed
69
                 **kwargs):
thomwolf's avatar
thomwolf committed
70
        super(DistilBertConfig, self).__init__(**kwargs)
VictorSanh's avatar
wip  
VictorSanh committed
71

VictorSanh's avatar
VictorSanh committed
72
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
VictorSanh's avatar
wip  
VictorSanh committed
73
74
75
76
77
78
79
80
81
82
83
84
                        and isinstance(vocab_size_or_config_json_file, unicode)):
            with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
            self.vocab_size = vocab_size_or_config_json_file
            self.max_position_embeddings = max_position_embeddings
            self.sinusoidal_pos_embds = sinusoidal_pos_embds
            self.n_layers = n_layers
            self.n_heads = n_heads
            self.dim = dim
VictorSanh's avatar
VictorSanh committed
85
            self.hidden_dim = hidden_dim
VictorSanh's avatar
wip  
VictorSanh committed
86
87
88
89
            self.dropout = dropout
            self.attention_dropout = attention_dropout
            self.activation = activation
            self.initializer_range = initializer_range
VictorSanh's avatar
VictorSanh committed
90
            self.tie_weights_ = tie_weights_
91
92
            self.qa_dropout = qa_dropout
            self.seq_classif_dropout = seq_classif_dropout
VictorSanh's avatar
wip  
VictorSanh committed
93
94
        else:
            raise ValueError("First argument must be either a vocabulary size (int)"
95
                             " or the path to a pretrained model config file (str)")
96
97
    @property
    def hidden_size(self):
98
        return self.dim
99
100
101
102
103
104
105
106

    @property
    def num_attention_heads(self):
        return self.n_heads

    @property
    def num_hidden_layers(self):
        return self.n_layers
VictorSanh's avatar
wip  
VictorSanh committed
107
108


VictorSanh's avatar
VictorSanh committed
109
### UTILS AND BUILDING BLOCKS OF THE ARCHITECTURE ###
VictorSanh's avatar
wip  
VictorSanh committed
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
def gelu(x):
    return 0.5 * x * (1.0 + torch.erf(x / math.sqrt(2.0)))

def create_sinusoidal_embeddings(n_pos, dim, out):
    position_enc = np.array([
        [pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)]
        for pos in range(n_pos)
    ])
    out[:, 0::2] = torch.FloatTensor(np.sin(position_enc[:, 0::2]))
    out[:, 1::2] = torch.FloatTensor(np.cos(position_enc[:, 1::2]))
    out.detach_()
    out.requires_grad = False

class Embeddings(nn.Module):
    def __init__(self,
                 config):
        super(Embeddings, self).__init__()
VictorSanh's avatar
VictorSanh committed
127
        self.word_embeddings = nn.Embedding(config.vocab_size, config.dim, padding_idx=0)
VictorSanh's avatar
wip  
VictorSanh committed
128
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.dim)
VictorSanh's avatar
VictorSanh committed
129
        if config.sinusoidal_pos_embds:
VictorSanh's avatar
wip  
VictorSanh committed
130
131
132
133
134
135
136
137
138
139
140
            create_sinusoidal_embeddings(n_pos=config.max_position_embeddings,
                                         dim=config.dim,
                                         out=self.position_embeddings.weight)

        self.LayerNorm = nn.LayerNorm(config.dim, eps=1e-12)
        self.dropout = nn.Dropout(config.dropout)

    def forward(self, input_ids):
        """
        Parameters
        ----------
VictorSanh's avatar
VictorSanh committed
141
142
143
144
145
146
147
        input_ids: torch.tensor(bs, max_seq_length)
            The token ids to embed.

        Outputs
        -------
        embeddings: torch.tensor(bs, max_seq_length, dim)
            The embedded tokens (plus position embeddings, no token_type embeddings)
VictorSanh's avatar
wip  
VictorSanh committed
148
149
150
151
152
153
154
155
        """
        seq_length = input_ids.size(1)
        position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device) # (max_seq_length)
        position_ids = position_ids.unsqueeze(0).expand_as(input_ids)                      # (bs, max_seq_length)

        word_embeddings = self.word_embeddings(input_ids)                   # (bs, max_seq_length, dim)
        position_embeddings = self.position_embeddings(position_ids)        # (bs, max_seq_length, dim)

VictorSanh's avatar
VictorSanh committed
156
157
158
        embeddings = word_embeddings + position_embeddings  # (bs, max_seq_length, dim)
        embeddings = self.LayerNorm(embeddings)             # (bs, max_seq_length, dim)
        embeddings = self.dropout(embeddings)               # (bs, max_seq_length, dim)
VictorSanh's avatar
wip  
VictorSanh committed
159
160
161
        return embeddings

class MultiHeadSelfAttention(nn.Module):
LysandreJik's avatar
LysandreJik committed
162
    def __init__(self, config):
VictorSanh's avatar
wip  
VictorSanh committed
163
164
165
166
167
168
169
170
171
        super(MultiHeadSelfAttention, self).__init__()

        self.n_heads = config.n_heads
        self.dim = config.dim
        self.dropout = nn.Dropout(p=config.attention_dropout)
        self.output_attentions = config.output_attentions

        assert self.dim % self.n_heads == 0

VictorSanh's avatar
VictorSanh committed
172
173
174
175
        self.q_lin = nn.Linear(in_features=config.dim, out_features=config.dim)
        self.k_lin = nn.Linear(in_features=config.dim, out_features=config.dim)
        self.v_lin = nn.Linear(in_features=config.dim, out_features=config.dim)
        self.out_lin = nn.Linear(in_features=config.dim, out_features=config.dim)
VictorSanh's avatar
wip  
VictorSanh committed
176

177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
    def prune_heads(self, heads):
        attention_head_size = self.dim // self.n_heads
        if len(heads) == 0:
            return
        mask = torch.ones(self.n_heads, attention_head_size)
        for head in heads:
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()
        # Prune linear layers
        self.q_lin = prune_linear_layer(self.q_lin, index)
        self.k_lin = prune_linear_layer(self.k_lin, index)
        self.v_lin = prune_linear_layer(self.v_lin, index)
        self.out_lin = prune_linear_layer(self.out_lin, index, dim=1)
        # Update hyper params
        self.n_heads = self.n_heads - len(heads)
        self.dim = attention_head_size * self.n_heads

LysandreJik's avatar
LysandreJik committed
195
    def forward(self, query, key, value, mask, head_mask = None):
VictorSanh's avatar
wip  
VictorSanh committed
196
197
198
199
200
201
202
203
        """
        Parameters
        ----------
        query: torch.tensor(bs, seq_length, dim)
        key: torch.tensor(bs, seq_length, dim)
        value: torch.tensor(bs, seq_length, dim)
        mask: torch.tensor(bs, seq_length)

VictorSanh's avatar
VictorSanh committed
204
205
        Outputs
        -------
VictorSanh's avatar
wip  
VictorSanh committed
206
207
208
        weights: torch.tensor(bs, n_heads, seq_length, seq_length)
            Attention weights
        context: torch.tensor(bs, seq_length, dim)
VictorSanh's avatar
VictorSanh committed
209
            Contextualized layer. Optional: only if `output_attentions=True`
VictorSanh's avatar
wip  
VictorSanh committed
210
211
212
        """
        bs, q_length, dim = query.size()
        k_length = key.size(1)
213
214
        # assert dim == self.dim, 'Dimensions do not match: %s input vs %s configured' % (dim, self.dim)
        # assert key.size() == value.size()
VictorSanh's avatar
wip  
VictorSanh committed
215

216
        dim_per_head = self.dim // self.n_heads
VictorSanh's avatar
wip  
VictorSanh committed
217
218
219
220
221
222
223
224
225
226
227

        assert 2 <= mask.dim() <= 3
        causal = (mask.dim() == 3)
        mask_reshp = (bs, 1, 1, k_length)

        def shape(x):
            """ separate heads """
            return x.view(bs, -1, self.n_heads, dim_per_head).transpose(1, 2)

        def unshape(x):
            """ group heads """
228
            return x.transpose(1, 2).contiguous().view(bs, -1, self.n_heads * dim_per_head)
VictorSanh's avatar
wip  
VictorSanh committed
229
230
231
232
233
234
235
236
237
238
239
240

        q = shape(self.q_lin(query))           # (bs, n_heads, q_length, dim_per_head)
        k = shape(self.k_lin(key))             # (bs, n_heads, k_length, dim_per_head)
        v = shape(self.v_lin(value))           # (bs, n_heads, k_length, dim_per_head)

        q = q / math.sqrt(dim_per_head)                     # (bs, n_heads, q_length, dim_per_head)
        scores = torch.matmul(q, k.transpose(2,3))          # (bs, n_heads, q_length, k_length)
        mask = (mask==0).view(mask_reshp).expand_as(scores) # (bs, n_heads, q_length, k_length)
        scores.masked_fill_(mask, -float('inf'))            # (bs, n_heads, q_length, k_length)

        weights = nn.Softmax(dim=-1)(scores)   # (bs, n_heads, q_length, k_length)
        weights = self.dropout(weights)        # (bs, n_heads, q_length, k_length)
241
242
243
244
245

        # Mask heads if we want to
        if head_mask is not None:
            weights = weights * head_mask

VictorSanh's avatar
wip  
VictorSanh committed
246
247
248
249
250
        context = torch.matmul(weights, v)     # (bs, n_heads, q_length, dim_per_head)
        context = unshape(context)             # (bs, q_length, dim)
        context = self.out_lin(context)        # (bs, q_length, dim)

        if self.output_attentions:
VictorSanh's avatar
VictorSanh committed
251
            return (context, weights)
VictorSanh's avatar
wip  
VictorSanh committed
252
        else:
VictorSanh's avatar
VictorSanh committed
253
            return (context,)
VictorSanh's avatar
wip  
VictorSanh committed
254
255

class FFN(nn.Module):
LysandreJik's avatar
LysandreJik committed
256
    def __init__(self, config):
VictorSanh's avatar
wip  
VictorSanh committed
257
258
259
260
        super(FFN, self).__init__()
        self.dropout = nn.Dropout(p=config.dropout)
        self.lin1 = nn.Linear(in_features=config.dim, out_features=config.hidden_dim)
        self.lin2 = nn.Linear(in_features=config.hidden_dim, out_features=config.dim)
261
        assert config.activation in ['relu', 'gelu'], "activation ({}) must be in ['relu', 'gelu']".format(config.activation)
VictorSanh's avatar
VictorSanh committed
262
        self.activation = gelu if config.activation == 'gelu' else nn.ReLU()
VictorSanh's avatar
wip  
VictorSanh committed
263

LysandreJik's avatar
LysandreJik committed
264
    def forward(self, input):
VictorSanh's avatar
wip  
VictorSanh committed
265
266
267
268
269
270
271
        x = self.lin1(input)
        x = self.activation(x)
        x = self.lin2(x)
        x = self.dropout(x)
        return x

class TransformerBlock(nn.Module):
LysandreJik's avatar
LysandreJik committed
272
    def __init__(self, config):
VictorSanh's avatar
wip  
VictorSanh committed
273
274
275
276
277
278
279
280
281
        super(TransformerBlock, self).__init__()

        self.n_heads = config.n_heads
        self.dim = config.dim
        self.hidden_dim = config.hidden_dim
        self.dropout = nn.Dropout(p=config.dropout)
        self.activation = config.activation
        self.output_attentions = config.output_attentions

VictorSanh's avatar
VictorSanh committed
282
        assert config.dim % config.n_heads == 0
VictorSanh's avatar
wip  
VictorSanh committed
283

VictorSanh's avatar
VictorSanh committed
284
        self.attention = MultiHeadSelfAttention(config)
VictorSanh's avatar
wip  
VictorSanh committed
285
286
        self.sa_layer_norm = nn.LayerNorm(normalized_shape=config.dim, eps=1e-12)

VictorSanh's avatar
VictorSanh committed
287
        self.ffn = FFN(config)
VictorSanh's avatar
wip  
VictorSanh committed
288
289
        self.output_layer_norm = nn.LayerNorm(normalized_shape=config.dim, eps=1e-12)

LysandreJik's avatar
LysandreJik committed
290
    def forward(self, x, attn_mask=None, head_mask=None):
VictorSanh's avatar
wip  
VictorSanh committed
291
292
293
294
295
        """
        Parameters
        ----------
        x: torch.tensor(bs, seq_length, dim)
        attn_mask: torch.tensor(bs, seq_length)
VictorSanh's avatar
VictorSanh committed
296
297
298
299
300
301
302

        Outputs
        -------
        sa_weights: torch.tensor(bs, n_heads, seq_length, seq_length)
            The attention weights
        ffn_output: torch.tensor(bs, seq_length, dim)
            The output of the transformer block contextualization.
VictorSanh's avatar
wip  
VictorSanh committed
303
304
        """
        # Self-Attention
305
        sa_output = self.attention(query=x, key=x, value=x, mask=attn_mask, head_mask=head_mask)
VictorSanh's avatar
wip  
VictorSanh committed
306
        if self.output_attentions:
VictorSanh's avatar
VictorSanh committed
307
            sa_output, sa_weights = sa_output                  # (bs, seq_length, dim), (bs, n_heads, seq_length, seq_length)
VictorSanh's avatar
VictorSanh committed
308
309
        else: # To handle these `output_attention` or `output_hidden_states` cases returning tuples
            assert type(sa_output) == tuple
VictorSanh's avatar
VictorSanh committed
310
            sa_output = sa_output[0]
VictorSanh's avatar
wip  
VictorSanh committed
311
312
313
314
315
316
        sa_output = self.sa_layer_norm(sa_output + x)          # (bs, seq_length, dim)

        # Feed Forward Network
        ffn_output = self.ffn(sa_output)                             # (bs, seq_length, dim)
        ffn_output = self.output_layer_norm(ffn_output + sa_output)  # (bs, seq_length, dim)

VictorSanh's avatar
VictorSanh committed
317
        output = (ffn_output,)
VictorSanh's avatar
wip  
VictorSanh committed
318
        if self.output_attentions:
VictorSanh's avatar
VictorSanh committed
319
320
            output = (sa_weights,) + output
        return output
VictorSanh's avatar
wip  
VictorSanh committed
321

322

VictorSanh's avatar
wip  
VictorSanh committed
323
class Transformer(nn.Module):
LysandreJik's avatar
LysandreJik committed
324
    def __init__(self, config):
VictorSanh's avatar
wip  
VictorSanh committed
325
326
327
        super(Transformer, self).__init__()
        self.n_layers = config.n_layers
        self.output_attentions = config.output_attentions
VictorSanh's avatar
VictorSanh committed
328
        self.output_hidden_states = config.output_hidden_states
VictorSanh's avatar
wip  
VictorSanh committed
329

VictorSanh's avatar
VictorSanh committed
330
331
        layer = TransformerBlock(config)
        self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.n_layers)])
VictorSanh's avatar
wip  
VictorSanh committed
332

LysandreJik's avatar
LysandreJik committed
333
    def forward(self, x, attn_mask=None, head_mask=None):
VictorSanh's avatar
wip  
VictorSanh committed
334
335
336
337
        """
        Parameters
        ----------
        x: torch.tensor(bs, seq_length, dim)
VictorSanh's avatar
VictorSanh committed
338
            Input sequence embedded.
VictorSanh's avatar
wip  
VictorSanh committed
339
        attn_mask: torch.tensor(bs, seq_length)
VictorSanh's avatar
VictorSanh committed
340
341
342
343
344
345
346
347
348
349
350
351
            Attention mask on the sequence.

        Outputs
        -------
        hidden_state: torch.tensor(bs, seq_length, dim)
            Sequence of hiddens states in the last (top) layer
        all_hidden_states: Tuple[torch.tensor(bs, seq_length, dim)]
            Tuple of length n_layers with the hidden states from each layer.
            Optional: only if output_hidden_states=True
        all_attentions: Tuple[torch.tensor(bs, n_heads, seq_length, seq_length)]
            Tuple of length n_layers with the attention weights from each layer
            Optional: only if output_attentions=True
VictorSanh's avatar
wip  
VictorSanh committed
352
        """
VictorSanh's avatar
VictorSanh committed
353
354
        all_hidden_states = ()
        all_attentions = ()
VictorSanh's avatar
wip  
VictorSanh committed
355

VictorSanh's avatar
VictorSanh committed
356
        hidden_state = x
357
358
359
360
361
362
363
364
365
        for i, layer_module in enumerate(self.layer):
            if self.output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_state,)

            layer_outputs = layer_module(x=hidden_state,
                                         attn_mask=attn_mask,
                                         head_mask=head_mask[i])
            hidden_state = layer_outputs[-1]

VictorSanh's avatar
wip  
VictorSanh committed
366
            if self.output_attentions:
367
368
                assert len(layer_outputs) == 2
                attentions = layer_outputs[0]
VictorSanh's avatar
VictorSanh committed
369
                all_attentions = all_attentions + (attentions,)
370
371
372
373
374
            else:
                assert len(layer_outputs) == 1

        # Add last layer
        if self.output_hidden_states:
VictorSanh's avatar
VictorSanh committed
375
            all_hidden_states = all_hidden_states + (hidden_state,)
VictorSanh's avatar
wip  
VictorSanh committed
376

VictorSanh's avatar
VictorSanh committed
377
378
379
        outputs = (hidden_state,)
        if self.output_hidden_states:
            outputs = outputs + (all_hidden_states,)
VictorSanh's avatar
wip  
VictorSanh committed
380
        if self.output_attentions:
VictorSanh's avatar
VictorSanh committed
381
            outputs = outputs + (all_attentions,)
382
        return outputs  # last-layer hidden state, (all hidden states), (all attentions)
VictorSanh's avatar
VictorSanh committed
383
384
385


### INTERFACE FOR ENCODER AND TASK SPECIFIC MODEL ###
thomwolf's avatar
thomwolf committed
386
class DistilBertPreTrainedModel(PreTrainedModel):
VictorSanh's avatar
VictorSanh committed
387
388
389
    """ An abstract class to handle weights initialization and
        a simple interface for downloading and loading pretrained models.
    """
thomwolf's avatar
thomwolf committed
390
391
    config_class = DistilBertConfig
    pretrained_model_archive_map = DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP
VictorSanh's avatar
VictorSanh committed
392
    load_tf_weights = None
thomwolf's avatar
thomwolf committed
393
    base_model_prefix = "distilbert"
VictorSanh's avatar
VictorSanh committed
394
395

    def __init__(self, *inputs, **kwargs):
thomwolf's avatar
thomwolf committed
396
        super(DistilBertPreTrainedModel, self).__init__(*inputs, **kwargs)
VictorSanh's avatar
VictorSanh committed
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
    
    def init_weights(self, module):
        """ Initialize the weights.
        """
        if isinstance(module, nn.Embedding):
            if module.weight.requires_grad:
                module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()


thomwolf's avatar
thomwolf committed
413
414
DISTILBERT_START_DOCSTRING = r"""
    DistilBERT is a small, fast, cheap and light Transformer model
415
416
417
418
    trained by distilling Bert base. It has 40% less parameters than
    `bert-base-uncased`, runs 60% faster while preserving over 95% of
    Bert's performances as measured on the GLUE language understanding benchmark.

thomwolf's avatar
thomwolf committed
419
    Here are the differences between the interface of Bert and DistilBert:
420

LysandreJik's avatar
LysandreJik committed
421
    - DistilBert doesn't have `token_type_ids`, you don't need to indicate which token belongs to which segment. Just separate your segments with the separation token `tokenizer.sep_token` (or `[SEP]`)
thomwolf's avatar
thomwolf committed
422
    - DistilBert doesn't have options to select the input positions (`position_ids` input). This could be added if necessary though, just let's us know if you need this option.
VictorSanh's avatar
VictorSanh committed
423

thomwolf's avatar
thomwolf committed
424
    For more information on DistilBERT, please refer to our
425
426
427
    `detailed blog post`_
    
    .. _`detailed blog post`:
LysandreJik's avatar
LysandreJik committed
428
        https://medium.com/huggingface/distilbert-8cf3380435b5
VictorSanh's avatar
VictorSanh committed
429
430

    Parameters:
thomwolf's avatar
thomwolf committed
431
        config (:class:`~pytorch_transformers.DistilBertConfig`): Model configuration class with all the parameters of the model. 
VictorSanh's avatar
VictorSanh committed
432
433
434
435
            Initializing with a config file does not load the weights associated with the model, only the configuration.
            Check out the :meth:`~pytorch_transformers.PreTrainedModel.from_pretrained` method to load the model weights.
"""

thomwolf's avatar
thomwolf committed
436
DISTILBERT_INPUTS_DOCSTRING = r"""
VictorSanh's avatar
VictorSanh committed
437
    Inputs:
LysandreJik's avatar
LysandreJik committed
438
439
440
        **input_ids** ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of input sequence tokens in the vocabulary.
            The input sequences should start with `[CLS]` and end with `[SEP]` tokens.
VictorSanh's avatar
VictorSanh committed
441
            
thomwolf's avatar
thomwolf committed
442
            For now, ONLY BertTokenizer(`bert-base-uncased`) is supported and you should use this tokenizer when using DistilBERT.
VictorSanh's avatar
VictorSanh committed
443
444
445
446
        **attention_mask**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Mask to avoid performing attention on padding token indices.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
447
448
449
450
        **head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
            Mask to nullify selected heads of the self-attention modules.
            Mask values selected in ``[0, 1]``:
            ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
VictorSanh's avatar
VictorSanh committed
451
452
"""

thomwolf's avatar
thomwolf committed
453
454
455
@add_start_docstrings("The bare DistilBERT encoder/transformer outputing raw hidden-states without any specific head on top.",
                      DISTILBERT_START_DOCSTRING, DISTILBERT_INPUTS_DOCSTRING)
class DistilBertModel(DistilBertPreTrainedModel):
VictorSanh's avatar
VictorSanh committed
456
    r"""
457
458
459
460
461
462
463
464
465
466
467
468
469
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
            Sequence of hidden-states at the output of the last layer of the model.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

thomwolf's avatar
thomwolf committed
470
471
        tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
        model = DistilBertModel.from_pretrained('distilbert-base-uncased')
472
473
474
475
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
        last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple

VictorSanh's avatar
VictorSanh committed
476
477
    """
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
478
        super(DistilBertModel, self).__init__(config)
VictorSanh's avatar
VictorSanh committed
479
480
481
482
483
484

        self.embeddings = Embeddings(config)   # Embeddings
        self.transformer = Transformer(config) # Encoder

        self.apply(self.init_weights)

485
486
487
488
489
490
491
492
493
494
495
496
497
498
    def _resize_token_embeddings(self, new_num_tokens):
        old_embeddings = self.embeddings.word_embeddings
        new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens)
        self.embeddings.word_embeddings = new_embeddings
        return self.embeddings.word_embeddings

    def _prune_heads(self, heads_to_prune):
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
            See base class PreTrainedModel
        """
        for layer, heads in heads_to_prune.items():
            self.transformer.layer[layer].attention.prune_heads(heads)

VictorSanh's avatar
VictorSanh committed
499
    def forward(self,
LysandreJik's avatar
LysandreJik committed
500
                input_ids, attention_mask=None, head_mask=None):
VictorSanh's avatar
VictorSanh committed
501
502
        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids) # (bs, seq_length)
VictorSanh's avatar
wip  
VictorSanh committed
503

504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
        if head_mask is not None:
            if head_mask.dim() == 1:
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
                head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1)
            elif head_mask.dim() == 2:
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
        else:
            head_mask = [None] * self.config.num_hidden_layers

VictorSanh's avatar
VictorSanh committed
519
520
        embedding_output = self.embeddings(input_ids)   # (bs, seq_length, dim)
        tfmr_output = self.transformer(x=embedding_output,
521
522
                                       attn_mask=attention_mask,
                                       head_mask=head_mask)
VictorSanh's avatar
VictorSanh committed
523
        hidden_state = tfmr_output[0]
524
525
526
        output = (hidden_state, ) + tfmr_output[1:]

        return output # last-layer hidden-state, (all hidden_states), (all attentions)
VictorSanh's avatar
wip  
VictorSanh committed
527
528


thomwolf's avatar
thomwolf committed
529
530
531
@add_start_docstrings("""DistilBert Model with a `masked language modeling` head on top. """,
                      DISTILBERT_START_DOCSTRING, DISTILBERT_INPUTS_DOCSTRING)
class DistilBertForMaskedLM(DistilBertPreTrainedModel):
VictorSanh's avatar
VictorSanh committed
532
    r"""
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
        **masked_lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Labels for computing the masked language modeling loss.
            Indices should be in ``[-1, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
            Tokens with indices set to ``-1`` are ignored (masked), the loss is only computed for the tokens with labels
            in ``[0, ..., config.vocab_size]``

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``masked_lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Masked language modeling loss.
        **prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

thomwolf's avatar
thomwolf committed
554
555
        tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
        model = DistilBertForMaskedLM.from_pretrained('distilbert-base-uncased')
556
557
558
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, masked_lm_labels=input_ids)
        loss, prediction_scores = outputs[:2]
VictorSanh's avatar
VictorSanh committed
559
560

    """
VictorSanh's avatar
VictorSanh committed
561
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
562
        super(DistilBertForMaskedLM, self).__init__(config)
VictorSanh's avatar
VictorSanh committed
563
564
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states
VictorSanh's avatar
wip  
VictorSanh committed
565

thomwolf's avatar
thomwolf committed
566
        self.distilbert = DistilBertModel(config)
VictorSanh's avatar
VictorSanh committed
567
568
569
570
571
        self.vocab_transform = nn.Linear(config.dim, config.dim)
        self.vocab_layer_norm = nn.LayerNorm(config.dim, eps=1e-12)
        self.vocab_projector = nn.Linear(config.dim, config.vocab_size)

        self.apply(self.init_weights)
VictorSanh's avatar
VictorSanh committed
572
        self.tie_weights()
VictorSanh's avatar
VictorSanh committed
573
574
575

        self.mlm_loss_fct = nn.CrossEntropyLoss(ignore_index=-1)

VictorSanh's avatar
VictorSanh committed
576
    def tie_weights(self):
577
578
        """ Make sure we are sharing the input and output embeddings.
            Export to TorchScript can't handle parameter sharing so we are cloning them instead.
VictorSanh's avatar
VictorSanh committed
579
        """
580
        self._tie_or_clone_weights(self.vocab_projector,
thomwolf's avatar
thomwolf committed
581
                                   self.distilbert.embeddings.word_embeddings)
VictorSanh's avatar
VictorSanh committed
582

LysandreJik's avatar
LysandreJik committed
583
    def forward(self, input_ids, attention_mask=None, masked_lm_labels=None, head_mask=None):
thomwolf's avatar
thomwolf committed
584
        dlbrt_output = self.distilbert(input_ids=input_ids,
585
586
                                    attention_mask=attention_mask,
                                    head_mask=head_mask)
VictorSanh's avatar
VictorSanh committed
587
        hidden_states = dlbrt_output[0]                              # (bs, seq_length, dim)
VictorSanh's avatar
VictorSanh committed
588
589
590
591
592
        prediction_logits = self.vocab_transform(hidden_states)      # (bs, seq_length, dim)
        prediction_logits = gelu(prediction_logits)                  # (bs, seq_length, dim)
        prediction_logits = self.vocab_layer_norm(prediction_logits) # (bs, seq_length, dim)
        prediction_logits = self.vocab_projector(prediction_logits)  # (bs, seq_length, vocab_size)

593
        outputs = (prediction_logits, ) + dlbrt_output[1:]
VictorSanh's avatar
VictorSanh committed
594
595
596
597
598
        if masked_lm_labels is not None:
            mlm_loss = self.mlm_loss_fct(prediction_logits.view(-1, prediction_logits.size(-1)),
                                         masked_lm_labels.view(-1))
            outputs = (mlm_loss,) + outputs     

599
600
        return outputs # (mlm_loss), prediction_logits, (all hidden_states), (all attentions)

VictorSanh's avatar
VictorSanh committed
601

thomwolf's avatar
thomwolf committed
602
@add_start_docstrings("""DistilBert Model transformer with a sequence classification/regression head on top (a linear layer on top of
VictorSanh's avatar
VictorSanh committed
603
                         the pooled output) e.g. for GLUE tasks. """,
thomwolf's avatar
thomwolf committed
604
605
                      DISTILBERT_START_DOCSTRING, DISTILBERT_INPUTS_DOCSTRING)
class DistilBertForSequenceClassification(DistilBertPreTrainedModel):
VictorSanh's avatar
VictorSanh committed
606
    r"""
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
        **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for computing the sequence classification/regression loss.
            Indices should be in ``[0, ..., config.num_labels - 1]``.
            If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss),
            If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy).

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Classification (or regression if config.num_labels==1) loss.
        **logits**: ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)``
            Classification (or regression if config.num_labels==1) scores (before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

thomwolf's avatar
thomwolf committed
628
629
        tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
        model = DistilBertForSequenceClassification.from_pretrained('distilbert-base-uncased')
630
631
632
633
634
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        labels = torch.tensor([1]).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, labels=labels)
        loss, logits = outputs[:2]

VictorSanh's avatar
VictorSanh committed
635
636
    """
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
637
        super(DistilBertForSequenceClassification, self).__init__(config)
VictorSanh's avatar
VictorSanh committed
638
639
        self.num_labels = config.num_labels

thomwolf's avatar
thomwolf committed
640
        self.distilbert = DistilBertModel(config)
VictorSanh's avatar
VictorSanh committed
641
642
643
644
645
646
        self.pre_classifier = nn.Linear(config.dim, config.dim)
        self.classifier = nn.Linear(config.dim, config.num_labels)
        self.dropout = nn.Dropout(config.seq_classif_dropout)

        self.apply(self.init_weights)

LysandreJik's avatar
LysandreJik committed
647
    def forward(self, input_ids,  attention_mask=None, labels=None, head_mask=None):
thomwolf's avatar
thomwolf committed
648
        distilbert_output = self.distilbert(input_ids=input_ids,
649
650
                                      attention_mask=attention_mask,
                                      head_mask=head_mask)
thomwolf's avatar
thomwolf committed
651
        hidden_state = distilbert_output[0]                    # (bs, seq_len, dim)
652
        pooled_output = hidden_state[:, 0]                    # (bs, dim)
VictorSanh's avatar
VictorSanh committed
653
654
655
656
657
        pooled_output = self.pre_classifier(pooled_output)   # (bs, dim)
        pooled_output = nn.ReLU()(pooled_output)             # (bs, dim)
        pooled_output = self.dropout(pooled_output)         # (bs, dim)
        logits = self.classifier(pooled_output)              # (bs, dim)

thomwolf's avatar
thomwolf committed
658
        outputs = (logits,) + distilbert_output[1:]
VictorSanh's avatar
VictorSanh committed
659
660
661
662
663
664
665
666
667
668
669
        if labels is not None:
            if self.num_labels == 1:
                loss_fct = nn.MSELoss()
                loss = loss_fct(logits.view(-1), labels.view(-1))
            else:
                loss_fct = nn.CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            outputs = (loss,) + outputs

        return outputs  # (loss), logits, (hidden_states), (attentions)

670

thomwolf's avatar
thomwolf committed
671
@add_start_docstrings("""DistilBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of
VictorSanh's avatar
VictorSanh committed
672
                         the hidden-states output to compute `span start logits` and `span end logits`). """,
thomwolf's avatar
thomwolf committed
673
674
                      DISTILBERT_START_DOCSTRING, DISTILBERT_INPUTS_DOCSTRING)
class DistilBertForQuestionAnswering(DistilBertPreTrainedModel):
VictorSanh's avatar
VictorSanh committed
675
    r"""
676
        **start_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
VictorSanh's avatar
VictorSanh committed
677
678
679
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.
680
        **end_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
VictorSanh's avatar
VictorSanh committed
681
682
683
684
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.

685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
        **start_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)``
            Span-start scores (before SoftMax).
        **end_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)``
            Span-end scores (before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

thomwolf's avatar
thomwolf committed
702
703
        tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
        model = DistilBertForQuestionAnswering.from_pretrained('distilbert-base-uncased')
704
705
706
707
708
709
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        start_positions = torch.tensor([1])
        end_positions = torch.tensor([3])
        outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
        loss, start_scores, end_scores = outputs[:2]

VictorSanh's avatar
VictorSanh committed
710
711
    """
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
712
        super(DistilBertForQuestionAnswering, self).__init__(config)
VictorSanh's avatar
VictorSanh committed
713

thomwolf's avatar
thomwolf committed
714
        self.distilbert = DistilBertModel(config)
VictorSanh's avatar
VictorSanh committed
715
716
717
718
719
720
        self.qa_outputs = nn.Linear(config.dim, config.num_labels)
        assert config.num_labels == 2
        self.dropout = nn.Dropout(config.qa_dropout)

        self.apply(self.init_weights)
        
LysandreJik's avatar
LysandreJik committed
721
    def forward(self, input_ids, attention_mask=None, start_positions=None, end_positions=None, head_mask=None):
thomwolf's avatar
thomwolf committed
722
        distilbert_output = self.distilbert(input_ids=input_ids,
723
724
                                      attention_mask=attention_mask,
                                      head_mask=head_mask)
thomwolf's avatar
thomwolf committed
725
        hidden_states = distilbert_output[0]                                 # (bs, max_query_len, dim)
VictorSanh's avatar
VictorSanh committed
726

VictorSanh's avatar
wip  
VictorSanh committed
727
728
729
730
731
732
        hidden_states = self.dropout(hidden_states)                       # (bs, max_query_len, dim)
        logits = self.qa_outputs(hidden_states)                           # (bs, max_query_len, 2)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1)                           # (bs, max_query_len)
        end_logits = end_logits.squeeze(-1)                               # (bs, max_query_len)

thomwolf's avatar
thomwolf committed
733
        outputs = (start_logits, end_logits,) + distilbert_output[1:]
VictorSanh's avatar
wip  
VictorSanh committed
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions.clamp_(0, ignored_index)
            end_positions.clamp_(0, ignored_index)

            loss_fct = nn.CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2
            outputs = (total_loss,) + outputs

VictorSanh's avatar
VictorSanh committed
751
        return outputs  # (loss), start_logits, end_logits, (hidden_states), (attentions)