modeling_distilbert.py 37.1 KB
Newer Older
VictorSanh's avatar
wip  
VictorSanh committed
1
# coding=utf-8
2
# Copyright 2019-present, the HuggingFace Inc. team and Facebook, Inc.
VictorSanh's avatar
wip  
VictorSanh committed
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
thomwolf's avatar
thomwolf committed
16
PyTorch DistilBERT model.
VictorSanh's avatar
wip  
VictorSanh committed
17
18
19
20
21
22
"""
from __future__ import absolute_import, division, print_function, unicode_literals

import json
import logging
import math
VictorSanh's avatar
VictorSanh committed
23
import copy
VictorSanh's avatar
wip  
VictorSanh committed
24
25
26
27
28
29
30
31
32
import sys
from io import open

import itertools
import numpy as np

import torch
import torch.nn as nn

33
from pytorch_transformers.modeling_utils import PretrainedConfig, PreTrainedModel, add_start_docstrings, prune_linear_layer
VictorSanh's avatar
wip  
VictorSanh committed
34
35
36
37
38

import logging
logger = logging.getLogger(__name__)


thomwolf's avatar
thomwolf committed
39
40
41
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP = {
    'distilbert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/distilbert-base-uncased-pytorch_model.bin",
    'distilbert-base-uncased-distilled-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/distilbert-base-uncased-distilled-squad-pytorch_model.bin"
VictorSanh's avatar
wip  
VictorSanh committed
42
43
}

thomwolf's avatar
thomwolf committed
44
45
46
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    'distilbert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/distilbert-base-uncased-config.json",
    'distilbert-base-uncased-distilled-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/distilbert-base-uncased-distilled-squad-config.json"
VictorSanh's avatar
wip  
VictorSanh committed
47
48
49
}


thomwolf's avatar
thomwolf committed
50
51
class DistilBertConfig(PretrainedConfig):
    pretrained_config_archive_map = DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP
VictorSanh's avatar
wip  
VictorSanh committed
52
53
54
55
56
57
58
59

    def __init__(self,
                 vocab_size_or_config_json_file=30522,
                 max_position_embeddings=512,
                 sinusoidal_pos_embds=True,
                 n_layers=6,
                 n_heads=12,
                 dim=768,
VictorSanh's avatar
VictorSanh committed
60
                 hidden_dim=4*768,
VictorSanh's avatar
wip  
VictorSanh committed
61
62
63
64
                 dropout=0.1,
                 attention_dropout=0.1,
                 activation='gelu',
                 initializer_range=0.02,
VictorSanh's avatar
VictorSanh committed
65
                 tie_weights_=True,
66
67
                 qa_dropout=0.1,
                 seq_classif_dropout=0.2,
VictorSanh's avatar
wip  
VictorSanh committed
68
                 **kwargs):
thomwolf's avatar
thomwolf committed
69
        super(DistilBertConfig, self).__init__(**kwargs)
VictorSanh's avatar
wip  
VictorSanh committed
70

VictorSanh's avatar
VictorSanh committed
71
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
VictorSanh's avatar
wip  
VictorSanh committed
72
73
74
75
76
77
78
79
80
81
82
83
                        and isinstance(vocab_size_or_config_json_file, unicode)):
            with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
            self.vocab_size = vocab_size_or_config_json_file
            self.max_position_embeddings = max_position_embeddings
            self.sinusoidal_pos_embds = sinusoidal_pos_embds
            self.n_layers = n_layers
            self.n_heads = n_heads
            self.dim = dim
VictorSanh's avatar
VictorSanh committed
84
            self.hidden_dim = hidden_dim
VictorSanh's avatar
wip  
VictorSanh committed
85
86
87
88
            self.dropout = dropout
            self.attention_dropout = attention_dropout
            self.activation = activation
            self.initializer_range = initializer_range
VictorSanh's avatar
VictorSanh committed
89
            self.tie_weights_ = tie_weights_
90
91
            self.qa_dropout = qa_dropout
            self.seq_classif_dropout = seq_classif_dropout
VictorSanh's avatar
wip  
VictorSanh committed
92
93
        else:
            raise ValueError("First argument must be either a vocabulary size (int)"
94
                             " or the path to a pretrained model config file (str)")
95
96
97
98
99
100
101
102
103
104
105
    @property
    def hidden_size(self):
        return self.hidden_dim

    @property
    def num_attention_heads(self):
        return self.n_heads

    @property
    def num_hidden_layers(self):
        return self.n_layers
VictorSanh's avatar
wip  
VictorSanh committed
106
107


VictorSanh's avatar
VictorSanh committed
108
### UTILS AND BUILDING BLOCKS OF THE ARCHITECTURE ###
VictorSanh's avatar
wip  
VictorSanh committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
def gelu(x):
    return 0.5 * x * (1.0 + torch.erf(x / math.sqrt(2.0)))

def create_sinusoidal_embeddings(n_pos, dim, out):
    position_enc = np.array([
        [pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)]
        for pos in range(n_pos)
    ])
    out[:, 0::2] = torch.FloatTensor(np.sin(position_enc[:, 0::2]))
    out[:, 1::2] = torch.FloatTensor(np.cos(position_enc[:, 1::2]))
    out.detach_()
    out.requires_grad = False

class Embeddings(nn.Module):
    def __init__(self,
                 config):
        super(Embeddings, self).__init__()
VictorSanh's avatar
VictorSanh committed
126
        self.word_embeddings = nn.Embedding(config.vocab_size, config.dim, padding_idx=0)
VictorSanh's avatar
wip  
VictorSanh committed
127
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.dim)
VictorSanh's avatar
VictorSanh committed
128
        if config.sinusoidal_pos_embds:
VictorSanh's avatar
wip  
VictorSanh committed
129
130
131
132
133
134
135
136
137
138
139
            create_sinusoidal_embeddings(n_pos=config.max_position_embeddings,
                                         dim=config.dim,
                                         out=self.position_embeddings.weight)

        self.LayerNorm = nn.LayerNorm(config.dim, eps=1e-12)
        self.dropout = nn.Dropout(config.dropout)

    def forward(self, input_ids):
        """
        Parameters
        ----------
VictorSanh's avatar
VictorSanh committed
140
141
142
143
144
145
146
        input_ids: torch.tensor(bs, max_seq_length)
            The token ids to embed.

        Outputs
        -------
        embeddings: torch.tensor(bs, max_seq_length, dim)
            The embedded tokens (plus position embeddings, no token_type embeddings)
VictorSanh's avatar
wip  
VictorSanh committed
147
148
149
150
151
152
153
154
        """
        seq_length = input_ids.size(1)
        position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device) # (max_seq_length)
        position_ids = position_ids.unsqueeze(0).expand_as(input_ids)                      # (bs, max_seq_length)

        word_embeddings = self.word_embeddings(input_ids)                   # (bs, max_seq_length, dim)
        position_embeddings = self.position_embeddings(position_ids)        # (bs, max_seq_length, dim)

VictorSanh's avatar
VictorSanh committed
155
156
157
        embeddings = word_embeddings + position_embeddings  # (bs, max_seq_length, dim)
        embeddings = self.LayerNorm(embeddings)             # (bs, max_seq_length, dim)
        embeddings = self.dropout(embeddings)               # (bs, max_seq_length, dim)
VictorSanh's avatar
wip  
VictorSanh committed
158
159
160
161
162
163
164
165
166
167
168
169
170
171
        return embeddings

class MultiHeadSelfAttention(nn.Module):
    def __init__(self,
                 config):
        super(MultiHeadSelfAttention, self).__init__()

        self.n_heads = config.n_heads
        self.dim = config.dim
        self.dropout = nn.Dropout(p=config.attention_dropout)
        self.output_attentions = config.output_attentions

        assert self.dim % self.n_heads == 0

VictorSanh's avatar
VictorSanh committed
172
173
174
175
        self.q_lin = nn.Linear(in_features=config.dim, out_features=config.dim)
        self.k_lin = nn.Linear(in_features=config.dim, out_features=config.dim)
        self.v_lin = nn.Linear(in_features=config.dim, out_features=config.dim)
        self.out_lin = nn.Linear(in_features=config.dim, out_features=config.dim)
VictorSanh's avatar
wip  
VictorSanh committed
176

177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
    def prune_heads(self, heads):
        attention_head_size = self.dim // self.n_heads
        if len(heads) == 0:
            return
        mask = torch.ones(self.n_heads, attention_head_size)
        for head in heads:
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()
        # Prune linear layers
        self.q_lin = prune_linear_layer(self.q_lin, index)
        self.k_lin = prune_linear_layer(self.k_lin, index)
        self.v_lin = prune_linear_layer(self.v_lin, index)
        self.out_lin = prune_linear_layer(self.out_lin, index, dim=1)
        # Update hyper params
        self.n_heads = self.n_heads - len(heads)
        self.dim = attention_head_size * self.n_heads

VictorSanh's avatar
wip  
VictorSanh committed
195
196
197
198
    def forward(self,
                query: torch.tensor,
                key: torch.tensor,
                value: torch.tensor,
199
200
                mask: torch.tensor,
                head_mask: torch.tensor = None):
VictorSanh's avatar
wip  
VictorSanh committed
201
202
203
204
205
206
207
208
        """
        Parameters
        ----------
        query: torch.tensor(bs, seq_length, dim)
        key: torch.tensor(bs, seq_length, dim)
        value: torch.tensor(bs, seq_length, dim)
        mask: torch.tensor(bs, seq_length)

VictorSanh's avatar
VictorSanh committed
209
210
        Outputs
        -------
VictorSanh's avatar
wip  
VictorSanh committed
211
212
213
        weights: torch.tensor(bs, n_heads, seq_length, seq_length)
            Attention weights
        context: torch.tensor(bs, seq_length, dim)
VictorSanh's avatar
VictorSanh committed
214
            Contextualized layer. Optional: only if `output_attentions=True`
VictorSanh's avatar
wip  
VictorSanh committed
215
216
217
        """
        bs, q_length, dim = query.size()
        k_length = key.size(1)
218
219
        # assert dim == self.dim, 'Dimensions do not match: %s input vs %s configured' % (dim, self.dim)
        # assert key.size() == value.size()
VictorSanh's avatar
wip  
VictorSanh committed
220

221
        dim_per_head = self.dim // self.n_heads
VictorSanh's avatar
wip  
VictorSanh committed
222
223
224
225
226
227
228
229
230
231
232

        assert 2 <= mask.dim() <= 3
        causal = (mask.dim() == 3)
        mask_reshp = (bs, 1, 1, k_length)

        def shape(x):
            """ separate heads """
            return x.view(bs, -1, self.n_heads, dim_per_head).transpose(1, 2)

        def unshape(x):
            """ group heads """
233
            return x.transpose(1, 2).contiguous().view(bs, -1, self.n_heads * dim_per_head)
VictorSanh's avatar
wip  
VictorSanh committed
234
235
236
237
238
239
240
241
242
243
244
245

        q = shape(self.q_lin(query))           # (bs, n_heads, q_length, dim_per_head)
        k = shape(self.k_lin(key))             # (bs, n_heads, k_length, dim_per_head)
        v = shape(self.v_lin(value))           # (bs, n_heads, k_length, dim_per_head)

        q = q / math.sqrt(dim_per_head)                     # (bs, n_heads, q_length, dim_per_head)
        scores = torch.matmul(q, k.transpose(2,3))          # (bs, n_heads, q_length, k_length)
        mask = (mask==0).view(mask_reshp).expand_as(scores) # (bs, n_heads, q_length, k_length)
        scores.masked_fill_(mask, -float('inf'))            # (bs, n_heads, q_length, k_length)

        weights = nn.Softmax(dim=-1)(scores)   # (bs, n_heads, q_length, k_length)
        weights = self.dropout(weights)        # (bs, n_heads, q_length, k_length)
246
247
248
249
250

        # Mask heads if we want to
        if head_mask is not None:
            weights = weights * head_mask

VictorSanh's avatar
wip  
VictorSanh committed
251
252
253
254
255
        context = torch.matmul(weights, v)     # (bs, n_heads, q_length, dim_per_head)
        context = unshape(context)             # (bs, q_length, dim)
        context = self.out_lin(context)        # (bs, q_length, dim)

        if self.output_attentions:
VictorSanh's avatar
VictorSanh committed
256
            return (context, weights)
VictorSanh's avatar
wip  
VictorSanh committed
257
        else:
VictorSanh's avatar
VictorSanh committed
258
            return (context,)
VictorSanh's avatar
wip  
VictorSanh committed
259
260
261
262
263
264
265
266

class FFN(nn.Module):
    def __init__(self,
                 config):
        super(FFN, self).__init__()
        self.dropout = nn.Dropout(p=config.dropout)
        self.lin1 = nn.Linear(in_features=config.dim, out_features=config.hidden_dim)
        self.lin2 = nn.Linear(in_features=config.hidden_dim, out_features=config.dim)
267
        assert config.activation in ['relu', 'gelu'], "activation ({}) must be in ['relu', 'gelu']".format(config.activation)
VictorSanh's avatar
VictorSanh committed
268
        self.activation = gelu if config.activation == 'gelu' else nn.ReLU()
VictorSanh's avatar
wip  
VictorSanh committed
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

    def forward(self,
                input: torch.tensor):
        x = self.lin1(input)
        x = self.activation(x)
        x = self.lin2(x)
        x = self.dropout(x)
        return x

class TransformerBlock(nn.Module):
    def __init__(self,
                 config):
        super(TransformerBlock, self).__init__()

        self.n_heads = config.n_heads
        self.dim = config.dim
        self.hidden_dim = config.hidden_dim
        self.dropout = nn.Dropout(p=config.dropout)
        self.activation = config.activation
        self.output_attentions = config.output_attentions

VictorSanh's avatar
VictorSanh committed
290
        assert config.dim % config.n_heads == 0
VictorSanh's avatar
wip  
VictorSanh committed
291

VictorSanh's avatar
VictorSanh committed
292
        self.attention = MultiHeadSelfAttention(config)
VictorSanh's avatar
wip  
VictorSanh committed
293
294
        self.sa_layer_norm = nn.LayerNorm(normalized_shape=config.dim, eps=1e-12)

VictorSanh's avatar
VictorSanh committed
295
        self.ffn = FFN(config)
VictorSanh's avatar
wip  
VictorSanh committed
296
297
298
299
        self.output_layer_norm = nn.LayerNorm(normalized_shape=config.dim, eps=1e-12)

    def forward(self,
                x: torch.tensor,
300
301
                attn_mask: torch.tensor = None,
                head_mask: torch.tensor = None):
VictorSanh's avatar
wip  
VictorSanh committed
302
303
304
305
306
        """
        Parameters
        ----------
        x: torch.tensor(bs, seq_length, dim)
        attn_mask: torch.tensor(bs, seq_length)
VictorSanh's avatar
VictorSanh committed
307
308
309
310
311
312
313

        Outputs
        -------
        sa_weights: torch.tensor(bs, n_heads, seq_length, seq_length)
            The attention weights
        ffn_output: torch.tensor(bs, seq_length, dim)
            The output of the transformer block contextualization.
VictorSanh's avatar
wip  
VictorSanh committed
314
315
        """
        # Self-Attention
316
        sa_output = self.attention(query=x, key=x, value=x, mask=attn_mask, head_mask=head_mask)
VictorSanh's avatar
wip  
VictorSanh committed
317
        if self.output_attentions:
VictorSanh's avatar
VictorSanh committed
318
            sa_output, sa_weights = sa_output                  # (bs, seq_length, dim), (bs, n_heads, seq_length, seq_length)
VictorSanh's avatar
VictorSanh committed
319
320
        else: # To handle these `output_attention` or `output_hidden_states` cases returning tuples
            assert type(sa_output) == tuple
VictorSanh's avatar
VictorSanh committed
321
            sa_output = sa_output[0]
VictorSanh's avatar
wip  
VictorSanh committed
322
323
324
325
326
327
        sa_output = self.sa_layer_norm(sa_output + x)          # (bs, seq_length, dim)

        # Feed Forward Network
        ffn_output = self.ffn(sa_output)                             # (bs, seq_length, dim)
        ffn_output = self.output_layer_norm(ffn_output + sa_output)  # (bs, seq_length, dim)

VictorSanh's avatar
VictorSanh committed
328
        output = (ffn_output,)
VictorSanh's avatar
wip  
VictorSanh committed
329
        if self.output_attentions:
VictorSanh's avatar
VictorSanh committed
330
331
            output = (sa_weights,) + output
        return output
VictorSanh's avatar
wip  
VictorSanh committed
332

333

VictorSanh's avatar
wip  
VictorSanh committed
334
335
336
337
338
339
class Transformer(nn.Module):
    def __init__(self,
                 config):
        super(Transformer, self).__init__()
        self.n_layers = config.n_layers
        self.output_attentions = config.output_attentions
VictorSanh's avatar
VictorSanh committed
340
        self.output_hidden_states = config.output_hidden_states
VictorSanh's avatar
wip  
VictorSanh committed
341

VictorSanh's avatar
VictorSanh committed
342
343
        layer = TransformerBlock(config)
        self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.n_layers)])
VictorSanh's avatar
wip  
VictorSanh committed
344
345
346

    def forward(self,
                x: torch.tensor,
347
348
                attn_mask: torch.tensor = None,
                head_mask: torch.tensor = None):
VictorSanh's avatar
wip  
VictorSanh committed
349
350
351
352
        """
        Parameters
        ----------
        x: torch.tensor(bs, seq_length, dim)
VictorSanh's avatar
VictorSanh committed
353
            Input sequence embedded.
VictorSanh's avatar
wip  
VictorSanh committed
354
        attn_mask: torch.tensor(bs, seq_length)
VictorSanh's avatar
VictorSanh committed
355
356
357
358
359
360
361
362
363
364
365
366
            Attention mask on the sequence.

        Outputs
        -------
        hidden_state: torch.tensor(bs, seq_length, dim)
            Sequence of hiddens states in the last (top) layer
        all_hidden_states: Tuple[torch.tensor(bs, seq_length, dim)]
            Tuple of length n_layers with the hidden states from each layer.
            Optional: only if output_hidden_states=True
        all_attentions: Tuple[torch.tensor(bs, n_heads, seq_length, seq_length)]
            Tuple of length n_layers with the attention weights from each layer
            Optional: only if output_attentions=True
VictorSanh's avatar
wip  
VictorSanh committed
367
        """
VictorSanh's avatar
VictorSanh committed
368
369
        all_hidden_states = ()
        all_attentions = ()
VictorSanh's avatar
wip  
VictorSanh committed
370

VictorSanh's avatar
VictorSanh committed
371
        hidden_state = x
372
373
374
375
376
377
378
379
380
        for i, layer_module in enumerate(self.layer):
            if self.output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_state,)

            layer_outputs = layer_module(x=hidden_state,
                                         attn_mask=attn_mask,
                                         head_mask=head_mask[i])
            hidden_state = layer_outputs[-1]

VictorSanh's avatar
wip  
VictorSanh committed
381
            if self.output_attentions:
382
383
                assert len(layer_outputs) == 2
                attentions = layer_outputs[0]
VictorSanh's avatar
VictorSanh committed
384
                all_attentions = all_attentions + (attentions,)
385
386
387
388
389
            else:
                assert len(layer_outputs) == 1

        # Add last layer
        if self.output_hidden_states:
VictorSanh's avatar
VictorSanh committed
390
            all_hidden_states = all_hidden_states + (hidden_state,)
VictorSanh's avatar
wip  
VictorSanh committed
391

VictorSanh's avatar
VictorSanh committed
392
393
394
        outputs = (hidden_state,)
        if self.output_hidden_states:
            outputs = outputs + (all_hidden_states,)
VictorSanh's avatar
wip  
VictorSanh committed
395
        if self.output_attentions:
VictorSanh's avatar
VictorSanh committed
396
            outputs = outputs + (all_attentions,)
397
        return outputs  # last-layer hidden state, (all hidden states), (all attentions)
VictorSanh's avatar
VictorSanh committed
398
399
400


### INTERFACE FOR ENCODER AND TASK SPECIFIC MODEL ###
thomwolf's avatar
thomwolf committed
401
class DistilBertPreTrainedModel(PreTrainedModel):
VictorSanh's avatar
VictorSanh committed
402
403
404
    """ An abstract class to handle weights initialization and
        a simple interface for downloading and loading pretrained models.
    """
thomwolf's avatar
thomwolf committed
405
406
    config_class = DistilBertConfig
    pretrained_model_archive_map = DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP
VictorSanh's avatar
VictorSanh committed
407
    load_tf_weights = None
thomwolf's avatar
thomwolf committed
408
    base_model_prefix = "distilbert"
VictorSanh's avatar
VictorSanh committed
409
410

    def __init__(self, *inputs, **kwargs):
thomwolf's avatar
thomwolf committed
411
        super(DistilBertPreTrainedModel, self).__init__(*inputs, **kwargs)
VictorSanh's avatar
VictorSanh committed
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
    
    def init_weights(self, module):
        """ Initialize the weights.
        """
        if isinstance(module, nn.Embedding):
            if module.weight.requires_grad:
                module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()


thomwolf's avatar
thomwolf committed
428
429
DISTILBERT_START_DOCSTRING = r"""
    DistilBERT is a small, fast, cheap and light Transformer model
430
431
432
433
    trained by distilling Bert base. It has 40% less parameters than
    `bert-base-uncased`, runs 60% faster while preserving over 95% of
    Bert's performances as measured on the GLUE language understanding benchmark.

thomwolf's avatar
thomwolf committed
434
    Here are the differences between the interface of Bert and DistilBert:
435

LysandreJik's avatar
LysandreJik committed
436
    - DistilBert doesn't have `token_type_ids`, you don't need to indicate which token belongs to which segment. Just separate your segments with the separation token `tokenizer.sep_token` (or `[SEP]`)
thomwolf's avatar
thomwolf committed
437
    - DistilBert doesn't have options to select the input positions (`position_ids` input). This could be added if necessary though, just let's us know if you need this option.
VictorSanh's avatar
VictorSanh committed
438

thomwolf's avatar
thomwolf committed
439
    For more information on DistilBERT, please refer to our
440
441
442
    `detailed blog post`_
    
    .. _`detailed blog post`:
LysandreJik's avatar
LysandreJik committed
443
        https://medium.com/huggingface/distilbert-8cf3380435b5
VictorSanh's avatar
VictorSanh committed
444
445

    Parameters:
thomwolf's avatar
thomwolf committed
446
        config (:class:`~pytorch_transformers.DistilBertConfig`): Model configuration class with all the parameters of the model. 
VictorSanh's avatar
VictorSanh committed
447
448
449
450
            Initializing with a config file does not load the weights associated with the model, only the configuration.
            Check out the :meth:`~pytorch_transformers.PreTrainedModel.from_pretrained` method to load the model weights.
"""

thomwolf's avatar
thomwolf committed
451
DISTILBERT_INPUTS_DOCSTRING = r"""
VictorSanh's avatar
VictorSanh committed
452
    Inputs:
LysandreJik's avatar
LysandreJik committed
453
454
455
        **input_ids** ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of input sequence tokens in the vocabulary.
            The input sequences should start with `[CLS]` and end with `[SEP]` tokens.
VictorSanh's avatar
VictorSanh committed
456
            
thomwolf's avatar
thomwolf committed
457
            For now, ONLY BertTokenizer(`bert-base-uncased`) is supported and you should use this tokenizer when using DistilBERT.
VictorSanh's avatar
VictorSanh committed
458
459
460
461
        **attention_mask**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Mask to avoid performing attention on padding token indices.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
462
463
464
465
        **head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
            Mask to nullify selected heads of the self-attention modules.
            Mask values selected in ``[0, 1]``:
            ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
VictorSanh's avatar
VictorSanh committed
466
467
"""

thomwolf's avatar
thomwolf committed
468
469
470
@add_start_docstrings("The bare DistilBERT encoder/transformer outputing raw hidden-states without any specific head on top.",
                      DISTILBERT_START_DOCSTRING, DISTILBERT_INPUTS_DOCSTRING)
class DistilBertModel(DistilBertPreTrainedModel):
VictorSanh's avatar
VictorSanh committed
471
    r"""
472
473
474
475
476
477
478
479
480
481
482
483
484
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
            Sequence of hidden-states at the output of the last layer of the model.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

thomwolf's avatar
thomwolf committed
485
486
        tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
        model = DistilBertModel.from_pretrained('distilbert-base-uncased')
487
488
489
490
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
        last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple

VictorSanh's avatar
VictorSanh committed
491
492
    """
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
493
        super(DistilBertModel, self).__init__(config)
VictorSanh's avatar
VictorSanh committed
494
495
496
497
498
499

        self.embeddings = Embeddings(config)   # Embeddings
        self.transformer = Transformer(config) # Encoder

        self.apply(self.init_weights)

500
501
502
503
504
505
506
507
508
509
510
511
512
513
    def _resize_token_embeddings(self, new_num_tokens):
        old_embeddings = self.embeddings.word_embeddings
        new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens)
        self.embeddings.word_embeddings = new_embeddings
        return self.embeddings.word_embeddings

    def _prune_heads(self, heads_to_prune):
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
            See base class PreTrainedModel
        """
        for layer, heads in heads_to_prune.items():
            self.transformer.layer[layer].attention.prune_heads(heads)

VictorSanh's avatar
VictorSanh committed
514
515
    def forward(self,
                input_ids: torch.tensor,
516
517
                attention_mask: torch.tensor = None,
                head_mask: torch.tensor = None):
VictorSanh's avatar
VictorSanh committed
518
519
        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids) # (bs, seq_length)
VictorSanh's avatar
wip  
VictorSanh committed
520

521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
        if head_mask is not None:
            if head_mask.dim() == 1:
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
                head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1)
            elif head_mask.dim() == 2:
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
        else:
            head_mask = [None] * self.config.num_hidden_layers

VictorSanh's avatar
VictorSanh committed
536
537
        embedding_output = self.embeddings(input_ids)   # (bs, seq_length, dim)
        tfmr_output = self.transformer(x=embedding_output,
538
539
                                       attn_mask=attention_mask,
                                       head_mask=head_mask)
VictorSanh's avatar
VictorSanh committed
540
        hidden_state = tfmr_output[0]
541
542
543
        output = (hidden_state, ) + tfmr_output[1:]

        return output # last-layer hidden-state, (all hidden_states), (all attentions)
VictorSanh's avatar
wip  
VictorSanh committed
544
545


thomwolf's avatar
thomwolf committed
546
547
548
@add_start_docstrings("""DistilBert Model with a `masked language modeling` head on top. """,
                      DISTILBERT_START_DOCSTRING, DISTILBERT_INPUTS_DOCSTRING)
class DistilBertForMaskedLM(DistilBertPreTrainedModel):
VictorSanh's avatar
VictorSanh committed
549
    r"""
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
        **masked_lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Labels for computing the masked language modeling loss.
            Indices should be in ``[-1, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
            Tokens with indices set to ``-1`` are ignored (masked), the loss is only computed for the tokens with labels
            in ``[0, ..., config.vocab_size]``

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``masked_lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Masked language modeling loss.
        **prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

thomwolf's avatar
thomwolf committed
571
572
        tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
        model = DistilBertForMaskedLM.from_pretrained('distilbert-base-uncased')
573
574
575
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, masked_lm_labels=input_ids)
        loss, prediction_scores = outputs[:2]
VictorSanh's avatar
VictorSanh committed
576
577

    """
VictorSanh's avatar
VictorSanh committed
578
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
579
        super(DistilBertForMaskedLM, self).__init__(config)
VictorSanh's avatar
VictorSanh committed
580
581
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states
VictorSanh's avatar
wip  
VictorSanh committed
582

thomwolf's avatar
thomwolf committed
583
        self.distilbert = DistilBertModel(config)
VictorSanh's avatar
VictorSanh committed
584
585
586
587
588
        self.vocab_transform = nn.Linear(config.dim, config.dim)
        self.vocab_layer_norm = nn.LayerNorm(config.dim, eps=1e-12)
        self.vocab_projector = nn.Linear(config.dim, config.vocab_size)

        self.apply(self.init_weights)
VictorSanh's avatar
VictorSanh committed
589
        self.tie_weights()
VictorSanh's avatar
VictorSanh committed
590
591
592

        self.mlm_loss_fct = nn.CrossEntropyLoss(ignore_index=-1)

VictorSanh's avatar
VictorSanh committed
593
    def tie_weights(self):
594
595
        """ Make sure we are sharing the input and output embeddings.
            Export to TorchScript can't handle parameter sharing so we are cloning them instead.
VictorSanh's avatar
VictorSanh committed
596
        """
597
        self._tie_or_clone_weights(self.vocab_projector,
thomwolf's avatar
thomwolf committed
598
                                   self.distilbert.embeddings.word_embeddings)
VictorSanh's avatar
VictorSanh committed
599
600
601
602

    def forward(self,
                input_ids: torch.tensor,
                attention_mask: torch.tensor = None,
603
604
                masked_lm_labels: torch.tensor = None,
                head_mask: torch.tensor = None):
thomwolf's avatar
thomwolf committed
605
        dlbrt_output = self.distilbert(input_ids=input_ids,
606
607
                                    attention_mask=attention_mask,
                                    head_mask=head_mask)
VictorSanh's avatar
VictorSanh committed
608
        hidden_states = dlbrt_output[0]                              # (bs, seq_length, dim)
VictorSanh's avatar
VictorSanh committed
609
610
611
612
613
        prediction_logits = self.vocab_transform(hidden_states)      # (bs, seq_length, dim)
        prediction_logits = gelu(prediction_logits)                  # (bs, seq_length, dim)
        prediction_logits = self.vocab_layer_norm(prediction_logits) # (bs, seq_length, dim)
        prediction_logits = self.vocab_projector(prediction_logits)  # (bs, seq_length, vocab_size)

614
        outputs = (prediction_logits, ) + dlbrt_output[1:]
VictorSanh's avatar
VictorSanh committed
615
616
617
618
619
        if masked_lm_labels is not None:
            mlm_loss = self.mlm_loss_fct(prediction_logits.view(-1, prediction_logits.size(-1)),
                                         masked_lm_labels.view(-1))
            outputs = (mlm_loss,) + outputs     

620
621
        return outputs # (mlm_loss), prediction_logits, (all hidden_states), (all attentions)

VictorSanh's avatar
VictorSanh committed
622

thomwolf's avatar
thomwolf committed
623
@add_start_docstrings("""DistilBert Model transformer with a sequence classification/regression head on top (a linear layer on top of
VictorSanh's avatar
VictorSanh committed
624
                         the pooled output) e.g. for GLUE tasks. """,
thomwolf's avatar
thomwolf committed
625
626
                      DISTILBERT_START_DOCSTRING, DISTILBERT_INPUTS_DOCSTRING)
class DistilBertForSequenceClassification(DistilBertPreTrainedModel):
VictorSanh's avatar
VictorSanh committed
627
    r"""
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
        **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for computing the sequence classification/regression loss.
            Indices should be in ``[0, ..., config.num_labels - 1]``.
            If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss),
            If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy).

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Classification (or regression if config.num_labels==1) loss.
        **logits**: ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)``
            Classification (or regression if config.num_labels==1) scores (before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

thomwolf's avatar
thomwolf committed
649
650
        tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
        model = DistilBertForSequenceClassification.from_pretrained('distilbert-base-uncased')
651
652
653
654
655
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        labels = torch.tensor([1]).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, labels=labels)
        loss, logits = outputs[:2]

VictorSanh's avatar
VictorSanh committed
656
657
    """
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
658
        super(DistilBertForSequenceClassification, self).__init__(config)
VictorSanh's avatar
VictorSanh committed
659
660
        self.num_labels = config.num_labels

thomwolf's avatar
thomwolf committed
661
        self.distilbert = DistilBertModel(config)
VictorSanh's avatar
VictorSanh committed
662
663
664
665
666
667
668
669
670
        self.pre_classifier = nn.Linear(config.dim, config.dim)
        self.classifier = nn.Linear(config.dim, config.num_labels)
        self.dropout = nn.Dropout(config.seq_classif_dropout)

        self.apply(self.init_weights)

    def forward(self,
                input_ids: torch.tensor,
                attention_mask: torch.tensor = None,
671
672
                labels: torch.tensor = None,
                head_mask: torch.tensor = None):
thomwolf's avatar
thomwolf committed
673
        distilbert_output = self.distilbert(input_ids=input_ids,
674
675
                                      attention_mask=attention_mask,
                                      head_mask=head_mask)
thomwolf's avatar
thomwolf committed
676
        hidden_state = distilbert_output[0]                    # (bs, seq_len, dim)
677
        pooled_output = hidden_state[:, 0]                    # (bs, dim)
VictorSanh's avatar
VictorSanh committed
678
679
680
681
682
        pooled_output = self.pre_classifier(pooled_output)   # (bs, dim)
        pooled_output = nn.ReLU()(pooled_output)             # (bs, dim)
        pooled_output = self.dropout(pooled_output)         # (bs, dim)
        logits = self.classifier(pooled_output)              # (bs, dim)

thomwolf's avatar
thomwolf committed
683
        outputs = (logits,) + distilbert_output[1:]
VictorSanh's avatar
VictorSanh committed
684
685
686
687
688
689
690
691
692
693
694
        if labels is not None:
            if self.num_labels == 1:
                loss_fct = nn.MSELoss()
                loss = loss_fct(logits.view(-1), labels.view(-1))
            else:
                loss_fct = nn.CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            outputs = (loss,) + outputs

        return outputs  # (loss), logits, (hidden_states), (attentions)

695

thomwolf's avatar
thomwolf committed
696
@add_start_docstrings("""DistilBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of
VictorSanh's avatar
VictorSanh committed
697
                         the hidden-states output to compute `span start logits` and `span end logits`). """,
thomwolf's avatar
thomwolf committed
698
699
                      DISTILBERT_START_DOCSTRING, DISTILBERT_INPUTS_DOCSTRING)
class DistilBertForQuestionAnswering(DistilBertPreTrainedModel):
VictorSanh's avatar
VictorSanh committed
700
    r"""
701
        **start_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
VictorSanh's avatar
VictorSanh committed
702
703
704
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.
705
        **end_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
VictorSanh's avatar
VictorSanh committed
706
707
708
709
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.

710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
        **start_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)``
            Span-start scores (before SoftMax).
        **end_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)``
            Span-end scores (before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

thomwolf's avatar
thomwolf committed
727
728
        tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
        model = DistilBertForQuestionAnswering.from_pretrained('distilbert-base-uncased')
729
730
731
732
733
734
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        start_positions = torch.tensor([1])
        end_positions = torch.tensor([3])
        outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
        loss, start_scores, end_scores = outputs[:2]

VictorSanh's avatar
VictorSanh committed
735
736
    """
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
737
        super(DistilBertForQuestionAnswering, self).__init__(config)
VictorSanh's avatar
VictorSanh committed
738

thomwolf's avatar
thomwolf committed
739
        self.distilbert = DistilBertModel(config)
VictorSanh's avatar
VictorSanh committed
740
741
742
743
744
745
746
747
748
749
        self.qa_outputs = nn.Linear(config.dim, config.num_labels)
        assert config.num_labels == 2
        self.dropout = nn.Dropout(config.qa_dropout)

        self.apply(self.init_weights)
        
    def forward(self,
                input_ids: torch.tensor,
                attention_mask: torch.tensor = None,
                start_positions: torch.tensor = None,
750
751
                end_positions: torch.tensor = None,
                head_mask: torch.tensor = None):
thomwolf's avatar
thomwolf committed
752
        distilbert_output = self.distilbert(input_ids=input_ids,
753
754
                                      attention_mask=attention_mask,
                                      head_mask=head_mask)
thomwolf's avatar
thomwolf committed
755
        hidden_states = distilbert_output[0]                                 # (bs, max_query_len, dim)
VictorSanh's avatar
VictorSanh committed
756

VictorSanh's avatar
wip  
VictorSanh committed
757
758
759
760
761
762
        hidden_states = self.dropout(hidden_states)                       # (bs, max_query_len, dim)
        logits = self.qa_outputs(hidden_states)                           # (bs, max_query_len, 2)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1)                           # (bs, max_query_len)
        end_logits = end_logits.squeeze(-1)                               # (bs, max_query_len)

thomwolf's avatar
thomwolf committed
763
        outputs = (start_logits, end_logits,) + distilbert_output[1:]
VictorSanh's avatar
wip  
VictorSanh committed
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions.clamp_(0, ignored_index)
            end_positions.clamp_(0, ignored_index)

            loss_fct = nn.CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2
            outputs = (total_loss,) + outputs

VictorSanh's avatar
VictorSanh committed
781
        return outputs  # (loss), start_logits, end_logits, (hidden_states), (attentions)