test_optimization.py 5.09 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16

17
import os
18
import tempfile
Aymeric Augustin's avatar
Aymeric Augustin committed
19
import unittest
20

21
from transformers import is_torch_available
22
from transformers.testing_utils import require_torch
Aymeric Augustin's avatar
Aymeric Augustin committed
23
24


25
if is_torch_available():
thomwolf's avatar
thomwolf committed
26
27
    import torch

28
29
30
31
32
33
34
    from transformers import (
        AdamW,
        get_constant_schedule,
        get_constant_schedule_with_warmup,
        get_cosine_schedule_with_warmup,
        get_cosine_with_hard_restarts_schedule_with_warmup,
        get_linear_schedule_with_warmup,
35
        get_polynomial_decay_schedule_with_warmup,
36
    )
thomwolf's avatar
thomwolf committed
37

lukovnikov's avatar
lukovnikov committed
38

thomwolf's avatar
thomwolf committed
39
40
41
42
43
44
45
def unwrap_schedule(scheduler, num_steps=10):
    lrs = []
    for _ in range(num_steps):
        scheduler.step()
        lrs.append(scheduler.get_lr())
    return lrs

46

47
48
49
50
51
52
def unwrap_and_save_reload_schedule(scheduler, num_steps=10):
    lrs = []
    for step in range(num_steps):
        scheduler.step()
        lrs.append(scheduler.get_lr())
        if step == num_steps // 2:
53
            with tempfile.TemporaryDirectory() as tmpdirname:
54
                file_name = os.path.join(tmpdirname, "schedule.bin")
55
56
57
58
59
60
                torch.save(scheduler.state_dict(), file_name)

                state_dict = torch.load(file_name)
                scheduler.load_state_dict(state_dict)
    return lrs

61

62
@require_torch
63
64
65
66
67
68
class OptimizationTest(unittest.TestCase):
    def assertListAlmostEqual(self, list1, list2, tol):
        self.assertEqual(len(list1), len(list2))
        for a, b in zip(list1, list2):
            self.assertAlmostEqual(a, b, delta=tol)

thomwolf's avatar
thomwolf committed
69
    def test_adam_w(self):
70
        w = torch.tensor([0.1, -0.2, -0.1], requires_grad=True)
thomwolf's avatar
thomwolf committed
71
        target = torch.tensor([0.4, 0.2, -0.5])
thomwolf's avatar
thomwolf committed
72
        criterion = torch.nn.MSELoss()
thomwolf's avatar
thomwolf committed
73
        # No warmup, constant schedule, no gradient clipping
thomwolf's avatar
thomwolf committed
74
        optimizer = AdamW(params=[w], lr=2e-1, weight_decay=0.0)
75
        for _ in range(100):
thomwolf's avatar
thomwolf committed
76
            loss = criterion(w, target)
77
78
            loss.backward()
            optimizer.step()
79
            w.grad.detach_()  # No zero_grad() function on simple tensors. we do it ourselves.
thomwolf's avatar
thomwolf committed
80
            w.grad.zero_()
81
82
83
        self.assertListAlmostEqual(w.tolist(), [0.4, 0.2, -0.5], tol=1e-2)


84
@require_torch
lukovnikov's avatar
lukovnikov committed
85
class ScheduleInitTest(unittest.TestCase):
thomwolf's avatar
thomwolf committed
86
    m = torch.nn.Linear(50, 50) if is_torch_available() else None
87
    optimizer = AdamW(m.parameters(), lr=10.0) if is_torch_available() else None
thomwolf's avatar
thomwolf committed
88
89
    num_steps = 10

90
    def assertListAlmostEqual(self, list1, list2, tol, msg=None):
thomwolf's avatar
thomwolf committed
91
92
        self.assertEqual(len(list1), len(list2))
        for a, b in zip(list1, list2):
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
            self.assertAlmostEqual(a, b, delta=tol, msg=msg)

    def test_schedulers(self):

        common_kwargs = {"num_warmup_steps": 2, "num_training_steps": 10}
        # schedulers doct format
        # function: (sched_args_dict, expected_learning_rates)
        scheds = {
            get_constant_schedule: ({}, [10.0] * self.num_steps),
            get_constant_schedule_with_warmup: (
                {"num_warmup_steps": 4},
                [2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0],
            ),
            get_linear_schedule_with_warmup: (
                {**common_kwargs},
                [5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25, 0.0],
            ),
            get_cosine_schedule_with_warmup: (
                {**common_kwargs},
                [5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38, 0.0],
            ),
            get_cosine_with_hard_restarts_schedule_with_warmup: (
                {**common_kwargs, "num_cycles": 2},
                [5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46, 0.0],
            ),
118
119
120
121
            get_polynomial_decay_schedule_with_warmup: (
                {**common_kwargs, "power": 2.0, "lr_end": 1e-7},
                [5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156, 1e-07],
            ),
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
        }

        for scheduler_func, data in scheds.items():
            kwargs, expected_learning_rates = data

            scheduler = scheduler_func(self.optimizer, **kwargs)
            lrs_1 = unwrap_schedule(scheduler, self.num_steps)
            self.assertEqual(len(lrs_1[0]), 1)
            self.assertListAlmostEqual(
                [l[0] for l in lrs_1],
                expected_learning_rates,
                tol=1e-2,
                msg=f"failed for {scheduler_func} in normal scheduler",
            )

            scheduler = scheduler_func(self.optimizer, **kwargs)
            lrs_2 = unwrap_and_save_reload_schedule(scheduler, self.num_steps)
            self.assertListEqual(
                [l[0] for l in lrs_1], [l[0] for l in lrs_2], msg=f"failed for {scheduler_func} in save and reload"
            )