test_pipelines.py 30.9 KB
Newer Older
1
import unittest
Julien Chaumond's avatar
Julien Chaumond committed
2
from typing import Iterable, List, Optional
Morgan Funtowicz's avatar
Morgan Funtowicz committed
3
4

from transformers import pipeline
5
from transformers.pipelines import SUPPORTED_TASKS, DefaultArgumentHandler, Pipeline
6
from transformers.testing_utils import require_tf, require_torch, slow, torch_device
7

Aymeric Augustin's avatar
Aymeric Augustin committed
8

9
DEFAULT_DEVICE_NUM = -1 if torch_device == "cpu" else 0
10
11
VALID_INPUTS = ["A simple string", ["list of strings"]]

12
NER_FINETUNED_MODELS = ["sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english"]
Morgan Funtowicz's avatar
Morgan Funtowicz committed
13

14
15
16
17
# xlnet-base-cased disabled for now, since it crashes TF2
FEATURE_EXTRACT_FINETUNED_MODELS = ["sshleifer/tiny-distilbert-base-cased"]
TEXT_CLASSIF_FINETUNED_MODELS = ["sshleifer/tiny-distilbert-base-uncased-finetuned-sst-2-english"]
TEXT_GENERATION_FINETUNED_MODELS = ["sshleifer/tiny-ctrl"]
18

19
20
FILL_MASK_FINETUNED_MODELS = ["sshleifer/tiny-distilroberta-base"]
LARGE_FILL_MASK_FINETUNED_MODELS = ["distilroberta-base"]  # @slow
Julien Chaumond's avatar
Julien Chaumond committed
21

22
23
SUMMARIZATION_FINETUNED_MODELS = ["sshleifer/bart-tiny-random", "patrickvonplaten/t5-tiny-random"]
TF_SUMMARIZATION_FINETUNED_MODELS = ["patrickvonplaten/t5-tiny-random"]
24

25
26
27
28
29
30
31
32
TRANSLATION_FINETUNED_MODELS = [
    ("patrickvonplaten/t5-tiny-random", "translation_en_to_de"),
    ("patrickvonplaten/t5-tiny-random", "translation_en_to_ro"),
]
TF_TRANSLATION_FINETUNED_MODELS = [("patrickvonplaten/t5-tiny-random", "translation_en_to_fr")]

expected_fill_mask_result = [
    [
33
34
        {"sequence": "<s>My name is John</s>", "score": 0.00782308354973793, "token": 610, "token_str": "臓John"},
        {"sequence": "<s>My name is Chris</s>", "score": 0.007475061342120171, "token": 1573, "token_str": "臓Chris"},
35
36
    ],
    [
37
38
        {"sequence": "<s>The largest city in France is Paris</s>", "score": 0.3185044229030609, "token": 2201},
        {"sequence": "<s>The largest city in France is Lyon</s>", "score": 0.21112334728240967, "token": 12790},
39
40
    ],
]
41

42
SUMMARIZATION_KWARGS = dict(num_beams=2, min_length=2, max_length=5)
43

44

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
class DefaultArgumentHandlerTestCase(unittest.TestCase):
    def setUp(self) -> None:
        self.handler = DefaultArgumentHandler()

    def test_kwargs_x(self):
        mono_data = {"X": "This is a sample input"}
        mono_args = self.handler(**mono_data)

        self.assertTrue(isinstance(mono_args, list))
        self.assertEqual(len(mono_args), 1)

        multi_data = {"x": ["This is a sample input", "This is a second sample input"]}
        multi_args = self.handler(**multi_data)

        self.assertTrue(isinstance(multi_args, list))
        self.assertEqual(len(multi_args), 2)

    def test_kwargs_data(self):
        mono_data = {"data": "This is a sample input"}
        mono_args = self.handler(**mono_data)

        self.assertTrue(isinstance(mono_args, list))
        self.assertEqual(len(mono_args), 1)

        multi_data = {"data": ["This is a sample input", "This is a second sample input"]}
        multi_args = self.handler(**multi_data)

        self.assertTrue(isinstance(multi_args, list))
        self.assertEqual(len(multi_args), 2)

    def test_multi_kwargs(self):
        mono_data = {"data": "This is a sample input", "X": "This is a sample input 2"}
        mono_args = self.handler(**mono_data)

        self.assertTrue(isinstance(mono_args, list))
        self.assertEqual(len(mono_args), 2)

        multi_data = {
            "data": ["This is a sample input", "This is a second sample input"],
            "test": ["This is a sample input 2", "This is a second sample input 2"],
        }
        multi_args = self.handler(**multi_data)

        self.assertTrue(isinstance(multi_args, list))
        self.assertEqual(len(multi_args), 4)

    def test_args(self):
        mono_data = "This is a sample input"
        mono_args = self.handler(mono_data)

        self.assertTrue(isinstance(mono_args, list))
        self.assertEqual(len(mono_args), 1)

        mono_data = ["This is a sample input"]
        mono_args = self.handler(mono_data)

        self.assertTrue(isinstance(mono_args, list))
        self.assertEqual(len(mono_args), 1)

        multi_data = ["This is a sample input", "This is a second sample input"]
        multi_args = self.handler(multi_data)

        self.assertTrue(isinstance(multi_args, list))
        self.assertEqual(len(multi_args), 2)

        multi_data = ["This is a sample input", "This is a second sample input"]
        multi_args = self.handler(*multi_data)

        self.assertTrue(isinstance(multi_args, list))
        self.assertEqual(len(multi_args), 2)


Morgan Funtowicz's avatar
Morgan Funtowicz committed
117
class MonoColumnInputTestCase(unittest.TestCase):
Julien Chaumond's avatar
Julien Chaumond committed
118
119
120
121
122
    def _test_mono_column_pipeline(
        self,
        nlp: Pipeline,
        valid_inputs: List,
        output_keys: Iterable[str],
123
        invalid_inputs: List = [None],
Julien Chaumond's avatar
Julien Chaumond committed
124
125
        expected_multi_result: Optional[List] = None,
        expected_check_keys: Optional[List[str]] = None,
126
        **kwargs,
Julien Chaumond's avatar
Julien Chaumond committed
127
    ):
Morgan Funtowicz's avatar
Morgan Funtowicz committed
128
129
        self.assertIsNotNone(nlp)

130
        mono_result = nlp(valid_inputs[0], **kwargs)
Morgan Funtowicz's avatar
Morgan Funtowicz committed
131
132
133
134
135
136
137
138
139
        self.assertIsInstance(mono_result, list)
        self.assertIsInstance(mono_result[0], (dict, list))

        if isinstance(mono_result[0], list):
            mono_result = mono_result[0]

        for key in output_keys:
            self.assertIn(key, mono_result[0])

140
        multi_result = [nlp(input) for input in valid_inputs]
Morgan Funtowicz's avatar
Morgan Funtowicz committed
141
142
143
        self.assertIsInstance(multi_result, list)
        self.assertIsInstance(multi_result[0], (dict, list))

Julien Chaumond's avatar
Julien Chaumond committed
144
145
146
147
148
149
150
        if expected_multi_result is not None:
            for result, expect in zip(multi_result, expected_multi_result):
                for key in expected_check_keys or []:
                    self.assertEqual(
                        set([o[key] for o in result]), set([o[key] for o in expect]),
                    )

Morgan Funtowicz's avatar
Morgan Funtowicz committed
151
152
153
154
155
156
157
158
159
        if isinstance(multi_result[0], list):
            multi_result = multi_result[0]

        for result in multi_result:
            for key in output_keys:
                self.assertIn(key, result)

        self.assertRaises(Exception, nlp, invalid_inputs)

160
    @require_torch
161
    def test_torch_sentiment_analysis(self):
Julien Chaumond's avatar
Julien Chaumond committed
162
        mandatory_keys = {"label", "score"}
163
164
        for model_name in TEXT_CLASSIF_FINETUNED_MODELS:
            nlp = pipeline(task="sentiment-analysis", model=model_name, tokenizer=model_name)
165
            self._test_mono_column_pipeline(nlp, VALID_INPUTS, mandatory_keys)
Morgan Funtowicz's avatar
Morgan Funtowicz committed
166

167
168
    @require_tf
    def test_tf_sentiment_analysis(self):
Julien Chaumond's avatar
Julien Chaumond committed
169
        mandatory_keys = {"label", "score"}
170
171
        for model_name in TEXT_CLASSIF_FINETUNED_MODELS:
            nlp = pipeline(task="sentiment-analysis", model=model_name, tokenizer=model_name, framework="tf")
172
            self._test_mono_column_pipeline(nlp, VALID_INPUTS, mandatory_keys)
Morgan Funtowicz's avatar
Morgan Funtowicz committed
173

174
    @require_torch
175
176
177
    def test_torch_feature_extraction(self):
        for model_name in FEATURE_EXTRACT_FINETUNED_MODELS:
            nlp = pipeline(task="feature-extraction", model=model_name, tokenizer=model_name)
178
            self._test_mono_column_pipeline(nlp, VALID_INPUTS, {})
Morgan Funtowicz's avatar
Morgan Funtowicz committed
179

180
    @require_tf
Julien Chaumond's avatar
Julien Chaumond committed
181
    def test_tf_feature_extraction(self):
182
183
        for model_name in FEATURE_EXTRACT_FINETUNED_MODELS:
            nlp = pipeline(task="feature-extraction", model=model_name, tokenizer=model_name, framework="tf")
184
            self._test_mono_column_pipeline(nlp, VALID_INPUTS, {})
Morgan Funtowicz's avatar
Morgan Funtowicz committed
185

Julien Chaumond's avatar
Julien Chaumond committed
186
    @require_torch
187
188
189
190
191
192
    def test_torch_fill_mask(self):
        mandatory_keys = {"sequence", "score", "token"}
        valid_inputs = [
            "My name is <mask>",
            "The largest city in France is <mask>",
        ]
193
194
195
196
        invalid_inputs = [
            "This is <mask> <mask>"  # More than 1 mask_token in the input is not supported
            "This is"  # No mask_token is not supported
        ]
197
198
        for model_name in FILL_MASK_FINETUNED_MODELS:
            nlp = pipeline(task="fill-mask", model=model_name, tokenizer=model_name, framework="pt", topk=2,)
199
200
201
            self._test_mono_column_pipeline(
                nlp, valid_inputs, mandatory_keys, invalid_inputs, expected_check_keys=["sequence"]
            )
202
203
204

    @require_tf
    def test_tf_fill_mask(self):
Julien Chaumond's avatar
Julien Chaumond committed
205
206
207
208
209
        mandatory_keys = {"sequence", "score", "token"}
        valid_inputs = [
            "My name is <mask>",
            "The largest city in France is <mask>",
        ]
210
211
212
213
        invalid_inputs = [
            "This is <mask> <mask>"  # More than 1 mask_token in the input is not supported
            "This is"  # No mask_token is not supported
        ]
214
215
        for model_name in FILL_MASK_FINETUNED_MODELS:
            nlp = pipeline(task="fill-mask", model=model_name, tokenizer=model_name, framework="tf", topk=2,)
216
217
218
            self._test_mono_column_pipeline(
                nlp, valid_inputs, mandatory_keys, invalid_inputs, expected_check_keys=["sequence"]
            )
219
220
221
222
223
224
225
226

    @require_torch
    @slow
    def test_torch_fill_mask_results(self):
        mandatory_keys = {"sequence", "score", "token"}
        valid_inputs = [
            "My name is <mask>",
            "The largest city in France is <mask>",
Julien Chaumond's avatar
Julien Chaumond committed
227
        ]
228
229
        for model_name in LARGE_FILL_MASK_FINETUNED_MODELS:
            nlp = pipeline(task="fill-mask", model=model_name, tokenizer=model_name, framework="pt", topk=2,)
Julien Chaumond's avatar
Julien Chaumond committed
230
231
232
233
            self._test_mono_column_pipeline(
                nlp,
                valid_inputs,
                mandatory_keys,
234
                expected_multi_result=expected_fill_mask_result,
Julien Chaumond's avatar
Julien Chaumond committed
235
236
237
238
                expected_check_keys=["sequence"],
            )

    @require_tf
239
240
    @slow
    def test_tf_fill_mask_results(self):
Julien Chaumond's avatar
Julien Chaumond committed
241
242
243
244
245
        mandatory_keys = {"sequence", "score", "token"}
        valid_inputs = [
            "My name is <mask>",
            "The largest city in France is <mask>",
        ]
246
247
        for model_name in LARGE_FILL_MASK_FINETUNED_MODELS:
            nlp = pipeline(task="fill-mask", model=model_name, tokenizer=model_name, framework="tf", topk=2)
Julien Chaumond's avatar
Julien Chaumond committed
248
249
250
251
            self._test_mono_column_pipeline(
                nlp,
                valid_inputs,
                mandatory_keys,
252
                expected_multi_result=expected_fill_mask_result,
Julien Chaumond's avatar
Julien Chaumond committed
253
254
255
                expected_check_keys=["sequence"],
            )

256
    @require_torch
257
    def test_torch_summarization(self):
258
259
        invalid_inputs = [4, "<mask>"]
        mandatory_keys = ["summary_text"]
260
261
        for model in SUMMARIZATION_FINETUNED_MODELS:
            nlp = pipeline(task="summarization", model=model, tokenizer=model)
262
263
264
            self._test_mono_column_pipeline(
                nlp, VALID_INPUTS, mandatory_keys, invalid_inputs=invalid_inputs, **SUMMARIZATION_KWARGS
            )
265

266
267
268
269
270
271
272
273
274
    @slow
    @require_torch
    def test_integration_torch_summarization(self):
        nlp = pipeline(task="summarization", device=DEFAULT_DEVICE_NUM)
        cnn_article = ' (CNN)The Palestinian Authority officially became the 123rd member of the International Criminal Court on Wednesday, a step that gives the court jurisdiction over alleged crimes in Palestinian territories. The formal accession was marked with a ceremony at The Hague, in the Netherlands, where the court is based. The Palestinians signed the ICC\'s founding Rome Statute in January, when they also accepted its jurisdiction over alleged crimes committed "in the occupied Palestinian territory, including East Jerusalem, since June 13, 2014." Later that month, the ICC opened a preliminary examination into the situation in Palestinian territories, paving the way for possible war crimes investigations against Israelis. As members of the court, Palestinians may be subject to counter-charges as well. Israel and the United States, neither of which is an ICC member, opposed the Palestinians\' efforts to join the body. But Palestinian Foreign Minister Riad al-Malki, speaking at Wednesday\'s ceremony, said it was a move toward greater justice. "As Palestine formally becomes a State Party to the Rome Statute today, the world is also a step closer to ending a long era of impunity and injustice," he said, according to an ICC news release. "Indeed, today brings us closer to our shared goals of justice and peace." Judge Kuniko Ozaki, a vice president of the ICC, said acceding to the treaty was just the first step for the Palestinians. "As the Rome Statute today enters into force for the State of Palestine, Palestine acquires all the rights as well as responsibilities that come with being a State Party to the Statute. These are substantive commitments, which cannot be taken lightly," she said. Rights group Human Rights Watch welcomed the development. "Governments seeking to penalize Palestine for joining the ICC should immediately end their pressure, and countries that support universal acceptance of the court\'s treaty should speak out to welcome its membership," said Balkees Jarrah, international justice counsel for the group. "What\'s objectionable is the attempts to undermine international justice, not Palestine\'s decision to join a treaty to which over 100 countries around the world are members." In January, when the preliminary ICC examination was opened, Israeli Prime Minister Benjamin Netanyahu described it as an outrage, saying the court was overstepping its boundaries. The United States also said it "strongly" disagreed with the court\'s decision. "As we have said repeatedly, we do not believe that Palestine is a state and therefore we do not believe that it is eligible to join the ICC," the State Department said in a statement. It urged the warring sides to resolve their differences through direct negotiations. "We will continue to oppose actions against Israel at the ICC as counterproductive to the cause of peace," it said. But the ICC begs to differ with the definition of a state for its purposes and refers to the territories as "Palestine." While a preliminary examination is not a formal investigation, it allows the court to review evidence and determine whether to investigate suspects on both sides. Prosecutor Fatou Bensouda said her office would "conduct its analysis in full independence and impartiality." The war between Israel and Hamas militants in Gaza last summer left more than 2,000 people dead. The inquiry will include alleged war crimes committed since June. The International Criminal Court was set up in 2002 to prosecute genocide, crimes against humanity and war crimes. CNN\'s Vasco Cotovio, Kareem Khadder and Faith Karimi contributed to this report.'
        expected_cnn_summary = " The Palestinian Authority becomes the 123rd member of the International Criminal Court . The move gives the court jurisdiction over alleged crimes in Palestinian territories . Israel and the United States opposed the Palestinians' efforts to join the court . Rights group Human Rights Watch welcomes the move, says governments seeking to penalize Palestine should end pressure ."
        result = nlp(cnn_article)
        self.assertEqual(result[0]["summary_text"], expected_cnn_summary)

275
    @slow
276
277
278
279
    @require_tf
    def test_tf_summarization(self):
        invalid_inputs = [4, "<mask>"]
        mandatory_keys = ["summary_text"]
280
281
        for model_name in TF_SUMMARIZATION_FINETUNED_MODELS:
            nlp = pipeline(task="summarization", model=model_name, tokenizer=model_name, framework="tf",)
282
283
284
            self._test_mono_column_pipeline(
                nlp, VALID_INPUTS, mandatory_keys, invalid_inputs=invalid_inputs, **SUMMARIZATION_KWARGS
            )
285
286

    @require_torch
287
    def test_torch_translation(self):
288
289
        invalid_inputs = [4, "<mask>"]
        mandatory_keys = ["translation_text"]
290
291
        for model_name, task in TRANSLATION_FINETUNED_MODELS:
            nlp = pipeline(task=task, model=model_name, tokenizer=model_name)
292
293
294
            self._test_mono_column_pipeline(
                nlp, VALID_INPUTS, mandatory_keys, invalid_inputs,
            )
295
296

    @require_tf
297
    @slow
298
299
300
    def test_tf_translation(self):
        invalid_inputs = [4, "<mask>"]
        mandatory_keys = ["translation_text"]
301
302
        for model, task in TF_TRANSLATION_FINETUNED_MODELS:
            nlp = pipeline(task=task, model=model, tokenizer=model, framework="tf")
303
            self._test_mono_column_pipeline(nlp, VALID_INPUTS, mandatory_keys, invalid_inputs=invalid_inputs)
304

305
    @require_torch
306
307
308
    def test_torch_text_generation(self):
        for model_name in TEXT_GENERATION_FINETUNED_MODELS:
            nlp = pipeline(task="text-generation", model=model_name, tokenizer=model_name, framework="pt")
309
            self._test_mono_column_pipeline(nlp, VALID_INPUTS, {})
310
311
312

    @require_tf
    def test_tf_text_generation(self):
313
314
        for model_name in TEXT_GENERATION_FINETUNED_MODELS:
            nlp = pipeline(task="text-generation", model=model_name, tokenizer=model_name, framework="tf")
315
            self._test_mono_column_pipeline(nlp, VALID_INPUTS, {})
316
317
318


QA_FINETUNED_MODELS = ["sshleifer/tiny-distilbert-base-cased-distilled-squad"]
319

Morgan Funtowicz's avatar
Morgan Funtowicz committed
320

321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
class ZeroShotClassificationPipelineTests(unittest.TestCase):
    def _test_scores_sum_to_one(self, result):
        sum = 0.0
        for score in result["scores"]:
            sum += score
        self.assertAlmostEqual(sum, 1.0)

    def _test_zero_shot_pipeline(self, nlp):
        output_keys = {"sequence", "labels", "scores"}
        valid_mono_inputs = [
            {"sequences": "Who are you voting for in 2020?", "candidate_labels": "politics"},
            {"sequences": "Who are you voting for in 2020?", "candidate_labels": ["politics"]},
            {"sequences": "Who are you voting for in 2020?", "candidate_labels": "politics, public health"},
            {"sequences": "Who are you voting for in 2020?", "candidate_labels": ["politics", "public health"]},
            {"sequences": ["Who are you voting for in 2020?"], "candidate_labels": "politics"},
            {
                "sequences": "Who are you voting for in 2020?",
                "candidate_labels": "politics",
                "hypothesis_template": "This text is about {}",
            },
        ]
        valid_multi_input = {
            "sequences": ["Who are you voting for in 2020?", "What is the capital of Spain?"],
            "candidate_labels": "politics",
        }
        invalid_inputs = [
            {"sequences": None, "candidate_labels": "politics"},
            {"sequences": "", "candidate_labels": "politics"},
            {"sequences": "Who are you voting for in 2020?", "candidate_labels": None},
            {"sequences": "Who are you voting for in 2020?", "candidate_labels": ""},
            {
                "sequences": "Who are you voting for in 2020?",
                "candidate_labels": "politics",
                "hypothesis_template": None,
            },
            {
                "sequences": "Who are you voting for in 2020?",
                "candidate_labels": "politics",
                "hypothesis_template": "",
            },
            {
                "sequences": "Who are you voting for in 2020?",
                "candidate_labels": "politics",
                "hypothesis_template": "Template without formatting syntax.",
            },
        ]
        self.assertIsNotNone(nlp)

        for mono_input in valid_mono_inputs:
            mono_result = nlp(**mono_input)
            self.assertIsInstance(mono_result, dict)
            if len(mono_result["labels"]) > 1:
                self._test_scores_sum_to_one(mono_result)

            for key in output_keys:
                self.assertIn(key, mono_result)

        multi_result = nlp(**valid_multi_input)
        self.assertIsInstance(multi_result, list)
        self.assertIsInstance(multi_result[0], dict)
        self.assertEqual(len(multi_result), len(valid_multi_input["sequences"]))

        for result in multi_result:
            for key in output_keys:
                self.assertIn(key, result)

            if len(result["labels"]) > 1:
                self._test_scores_sum_to_one(result)

        for bad_input in invalid_inputs:
            self.assertRaises(Exception, nlp, **bad_input)

    def _test_zero_shot_pipeline_outputs(self, nlp):
        inputs = [
            {
                "sequences": "Who are you voting for in 2020?",
                "candidate_labels": ["politics", "public health", "science"],
            },
            {
                "sequences": "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.",
                "candidate_labels": ["machine learning", "statistics", "translation", "vision"],
                "multi_class": True,
            },
        ]

        expected_outputs = [
            {
                "sequence": "Who are you voting for in 2020?",
                "labels": ["politics", "public health", "science"],
                "scores": [0.975, 0.015, 0.008],
            },
            {
                "sequence": "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.",
                "labels": ["translation", "machine learning", "vision", "statistics"],
                "scores": [0.817, 0.712, 0.018, 0.017],
            },
        ]

        for input, expected_output in zip(inputs, expected_outputs):
            output = nlp(**input)
            for key in output:
                if key == "scores":
                    for output_score, expected_score in zip(output[key], expected_output[key]):
                        self.assertAlmostEqual(output_score, expected_score, places=2)
                else:
                    self.assertEqual(output[key], expected_output[key])

    @require_torch
    def test_torch_zero_shot_classification(self):
        for model_name in TEXT_CLASSIF_FINETUNED_MODELS:
            nlp = pipeline(task="zero-shot-classification", model=model_name, tokenizer=model_name)
            self._test_zero_shot_pipeline(nlp)

    @require_tf
    def test_tf_zero_shot_classification(self):
        for model_name in TEXT_CLASSIF_FINETUNED_MODELS:
            nlp = pipeline(task="zero-shot-classification", model=model_name, tokenizer=model_name, framework="tf")
            self._test_zero_shot_pipeline(nlp)

    @slow
    @require_torch
    def test_torch_zero_shot_outputs(self):
        nlp = pipeline(task="zero-shot-classification", model="roberta-large-mnli")
        self._test_zero_shot_pipeline_outputs(nlp)

    @slow
    @require_tf
    def test_tf_zero_shot_outputs(self):
        nlp = pipeline(task="zero-shot-classification", model="roberta-large-mnli", framework="tf")
        self._test_zero_shot_pipeline_outputs(nlp)


453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
class QAPipelineTests(unittest.TestCase):
    def _test_qa_pipeline(self, nlp):
        output_keys = {"score", "answer", "start", "end"}
        valid_inputs = [
            {"question": "Where was HuggingFace founded ?", "context": "HuggingFace was founded in Paris."},
            {
                "question": "In what field is HuggingFace working ?",
                "context": "HuggingFace is a startup based in New-York founded in Paris which is trying to solve NLP.",
            },
        ]
        invalid_inputs = [
            {"question": "", "context": "This is a test to try empty question edge case"},
            {"question": None, "context": "This is a test to try empty question edge case"},
            {"question": "What is does with empty context ?", "context": ""},
            {"question": "What is does with empty context ?", "context": None},
        ]
Morgan Funtowicz's avatar
Morgan Funtowicz committed
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
        self.assertIsNotNone(nlp)

        mono_result = nlp(valid_inputs[0])
        self.assertIsInstance(mono_result, dict)

        for key in output_keys:
            self.assertIn(key, mono_result)

        multi_result = nlp(valid_inputs)
        self.assertIsInstance(multi_result, list)
        self.assertIsInstance(multi_result[0], dict)

        for result in multi_result:
            for key in output_keys:
                self.assertIn(key, result)
484
485
        for bad_input in invalid_inputs:
            self.assertRaises(Exception, nlp, bad_input)
Morgan Funtowicz's avatar
Morgan Funtowicz committed
486
487
        self.assertRaises(Exception, nlp, invalid_inputs)

488
    @require_torch
489
490
491
492
    def test_torch_question_answering(self):
        for model_name in QA_FINETUNED_MODELS:
            nlp = pipeline(task="question-answering", model=model_name, tokenizer=model_name)
            self._test_qa_pipeline(nlp)
Morgan Funtowicz's avatar
Morgan Funtowicz committed
493

494
495
    @require_tf
    def test_tf_question_answering(self):
496
497
498
        for model_name in QA_FINETUNED_MODELS:
            nlp = pipeline(task="question-answering", model=model_name, tokenizer=model_name, framework="tf")
            self._test_qa_pipeline(nlp)
Lysandre Debut's avatar
Lysandre Debut committed
499
500


501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
class NerPipelineTests(unittest.TestCase):
    def _test_ner_pipeline(
        self, nlp: Pipeline, output_keys: Iterable[str],
    ):

        ungrouped_ner_inputs = [
            [
                {"entity": "B-PER", "index": 1, "score": 0.9994944930076599, "word": "Cons"},
                {"entity": "B-PER", "index": 2, "score": 0.8025449514389038, "word": "##uelo"},
                {"entity": "I-PER", "index": 3, "score": 0.9993102550506592, "word": "Ara"},
                {"entity": "I-PER", "index": 4, "score": 0.9993743896484375, "word": "##煤j"},
                {"entity": "I-PER", "index": 5, "score": 0.9992871880531311, "word": "##o"},
                {"entity": "I-PER", "index": 6, "score": 0.9993029236793518, "word": "No"},
                {"entity": "I-PER", "index": 7, "score": 0.9981776475906372, "word": "##guera"},
                {"entity": "B-PER", "index": 15, "score": 0.9998136162757874, "word": "Andr茅s"},
                {"entity": "I-PER", "index": 16, "score": 0.999740719795227, "word": "Pas"},
                {"entity": "I-PER", "index": 17, "score": 0.9997414350509644, "word": "##tran"},
                {"entity": "I-PER", "index": 18, "score": 0.9996136426925659, "word": "##a"},
                {"entity": "B-ORG", "index": 28, "score": 0.9989739060401917, "word": "Far"},
                {"entity": "I-ORG", "index": 29, "score": 0.7188422083854675, "word": "##c"},
            ],
            [
                {"entity": "I-PER", "index": 1, "score": 0.9968166351318359, "word": "En"},
                {"entity": "I-PER", "index": 2, "score": 0.9957635998725891, "word": "##zo"},
                {"entity": "I-ORG", "index": 7, "score": 0.9986497163772583, "word": "UN"},
            ],
        ]
        expected_grouped_ner_results = [
            [
                {"entity_group": "B-PER", "score": 0.9710702640669686, "word": "Consuelo Ara煤jo Noguera"},
                {"entity_group": "B-PER", "score": 0.9997273534536362, "word": "Andr茅s Pastrana"},
                {"entity_group": "B-ORG", "score": 0.8589080572128296, "word": "Farc"},
            ],
            [
                {"entity_group": "I-PER", "score": 0.9962901175022125, "word": "Enzo"},
                {"entity_group": "I-ORG", "score": 0.9986497163772583, "word": "UN"},
            ],
        ]

        self.assertIsNotNone(nlp)

        mono_result = nlp(VALID_INPUTS[0])
        self.assertIsInstance(mono_result, list)
        self.assertIsInstance(mono_result[0], (dict, list))

        if isinstance(mono_result[0], list):
            mono_result = mono_result[0]

        for key in output_keys:
            self.assertIn(key, mono_result[0])

        multi_result = [nlp(input) for input in VALID_INPUTS]
        self.assertIsInstance(multi_result, list)
        self.assertIsInstance(multi_result[0], (dict, list))

        if isinstance(multi_result[0], list):
            multi_result = multi_result[0]

        for result in multi_result:
            for key in output_keys:
                self.assertIn(key, result)

        for ungrouped_input, grouped_result in zip(ungrouped_ner_inputs, expected_grouped_ner_results):
            self.assertEqual(nlp.group_entities(ungrouped_input), grouped_result)

    @require_torch
    def test_torch_ner(self):
        mandatory_keys = {"entity", "word", "score"}
        for model_name in NER_FINETUNED_MODELS:
            nlp = pipeline(task="ner", model=model_name, tokenizer=model_name)
            self._test_ner_pipeline(nlp, mandatory_keys)

    @require_torch
    def test_ner_grouped(self):
        mandatory_keys = {"entity_group", "word", "score"}
        for model_name in NER_FINETUNED_MODELS:
            nlp = pipeline(task="ner", model=model_name, tokenizer=model_name, grouped_entities=True)
            self._test_ner_pipeline(nlp, mandatory_keys)

    @require_tf
    def test_tf_ner(self):
        mandatory_keys = {"entity", "word", "score"}
        for model_name in NER_FINETUNED_MODELS:
            nlp = pipeline(task="ner", model=model_name, tokenizer=model_name, framework="tf")
            self._test_ner_pipeline(nlp, mandatory_keys)

    @require_tf
    def test_tf_ner_grouped(self):
        mandatory_keys = {"entity_group", "word", "score"}
        for model_name in NER_FINETUNED_MODELS:
            nlp = pipeline(task="ner", model=model_name, tokenizer=model_name, framework="tf", grouped_entities=True)
            self._test_ner_pipeline(nlp, mandatory_keys)


Lysandre Debut's avatar
Lysandre Debut committed
595
596
class PipelineCommonTests(unittest.TestCase):

597
    pipelines = SUPPORTED_TASKS.keys()
Lysandre Debut's avatar
Lysandre Debut committed
598
599
600
601
602

    @slow
    @require_tf
    def test_tf_defaults(self):
        # Test that pipelines can be correctly loaded without any argument
Patrick von Platen's avatar
Patrick von Platen committed
603
        for task in self.pipelines:
604
            with self.subTest(msg="Testing TF defaults with TF and {}".format(task)):
Patrick von Platen's avatar
Patrick von Platen committed
605
                pipeline(task, framework="tf")
Lysandre Debut's avatar
Lysandre Debut committed
606
607
608
609
610

    @slow
    @require_torch
    def test_pt_defaults(self):
        # Test that pipelines can be correctly loaded without any argument
Patrick von Platen's avatar
Patrick von Platen committed
611
612
613
        for task in self.pipelines:
            with self.subTest(msg="Testing Torch defaults with PyTorch and {}".format(task)):
                pipeline(task, framework="pt")