test_pipelines.py 19.4 KB
Newer Older
1
import unittest
Julien Chaumond's avatar
Julien Chaumond committed
2
from typing import Iterable, List, Optional
Morgan Funtowicz's avatar
Morgan Funtowicz committed
3
4

from transformers import pipeline
5
from transformers.pipelines import DefaultArgumentHandler, Pipeline
6

Lysandre Debut's avatar
Lysandre Debut committed
7
from .utils import require_tf, require_torch, slow
8

Aymeric Augustin's avatar
Aymeric Augustin committed
9

10
11
QA_FINETUNED_MODELS = [
    (("bert-base-uncased", {"use_fast": False}), "bert-large-uncased-whole-word-masking-finetuned-squad", None),
Patrick von Platen's avatar
Patrick von Platen committed
12
    (("distilbert-base-cased-distilled-squad", {"use_fast": False}), "distilbert-base-cased-distilled-squad", None),
13
]
Morgan Funtowicz's avatar
Morgan Funtowicz committed
14

15
16
TF_QA_FINETUNED_MODELS = [
    (("bert-base-uncased", {"use_fast": False}), "bert-large-uncased-whole-word-masking-finetuned-squad", None),
Patrick von Platen's avatar
Patrick von Platen committed
17
    (("distilbert-base-cased-distilled-squad", {"use_fast": False}), "distilbert-base-cased-distilled-squad", None),
18
]
19
20
21

TF_NER_FINETUNED_MODELS = {
    (
22
        "bert-base-cased",
Julien Chaumond's avatar
Julien Chaumond committed
23
24
        "dbmdz/bert-large-cased-finetuned-conll03-english",
        "dbmdz/bert-large-cased-finetuned-conll03-english",
25
26
27
    )
}

Morgan Funtowicz's avatar
Morgan Funtowicz committed
28
29
NER_FINETUNED_MODELS = {
    (
30
        "bert-base-cased",
Julien Chaumond's avatar
Julien Chaumond committed
31
32
        "dbmdz/bert-large-cased-finetuned-conll03-english",
        "dbmdz/bert-large-cased-finetuned-conll03-english",
Morgan Funtowicz's avatar
Morgan Funtowicz committed
33
34
35
36
    )
}

FEATURE_EXTRACT_FINETUNED_MODELS = {
37
38
    ("bert-base-cased", "bert-base-cased", None),
    # ('xlnet-base-cased', 'xlnet-base-cased', None), # Disabled for now as it crash for TF2
39
    ("distilbert-base-cased", "distilbert-base-cased", None),
Morgan Funtowicz's avatar
Morgan Funtowicz committed
40
}
41

42
TF_FEATURE_EXTRACT_FINETUNED_MODELS = {
43
    # ('xlnet-base-cased', 'xlnet-base-cased', None), # Disabled for now as it crash for TF2
44
    ("distilbert-base-cased", "distilbert-base-cased", None),
45
46
47
48
}

TF_TEXT_CLASSIF_FINETUNED_MODELS = {
    (
49
        "bert-base-uncased",
50
51
        "distilbert-base-uncased-finetuned-sst-2-english",
        "distilbert-base-uncased-finetuned-sst-2-english",
52
53
54
    )
}

Morgan Funtowicz's avatar
Morgan Funtowicz committed
55
56
TEXT_CLASSIF_FINETUNED_MODELS = {
    (
Funtowicz Morgan's avatar
Funtowicz Morgan committed
57
        "distilbert-base-cased",
58
59
        "distilbert-base-uncased-finetuned-sst-2-english",
        "distilbert-base-uncased-finetuned-sst-2-english",
Morgan Funtowicz's avatar
Morgan Funtowicz committed
60
    )
61
62
}

63
64
65
66
67
TEXT_GENERATION_FINETUNED_MODELS = {
    ("gpt2", "gpt2"),
    ("xlnet-base-cased", "xlnet-base-cased"),
}

68
69
70
71
72
TF_TEXT_GENERATION_FINETUNED_MODELS = {
    ("gpt2", "gpt2"),
    ("xlnet-base-cased", "xlnet-base-cased"),
}

73
74
75
FILL_MASK_FINETUNED_MODELS = [
    (("distilroberta-base", {"use_fast": False}), "distilroberta-base", None),
]
Julien Chaumond's avatar
Julien Chaumond committed
76

77
78
79
TF_FILL_MASK_FINETUNED_MODELS = [
    (("distilroberta-base", {"use_fast": False}), "distilroberta-base", None),
]
Julien Chaumond's avatar
Julien Chaumond committed
80

81
82
83
84
85
SUMMARIZATION_FINETUNED_MODELS = {
    ("sshleifer/bart-tiny-random", "bart-large-cnn"),
    ("patrickvonplaten/t5-tiny-random", "t5-small"),
}
TF_SUMMARIZATION_FINETUNED_MODELS = {("patrickvonplaten/t5-tiny-random", "t5-small")}
86

87
TRANSLATION_FINETUNED_MODELS = {
88
89
    ("patrickvonplaten/t5-tiny-random", "t5-small", "translation_en_to_de"),
    ("patrickvonplaten/t5-tiny-random", "t5-small", "translation_en_to_ro"),
90
}
91
TF_TRANSLATION_FINETUNED_MODELS = {("patrickvonplaten/t5-tiny-random", "t5-small", "translation_en_to_fr")}
92

93

94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
class DefaultArgumentHandlerTestCase(unittest.TestCase):
    def setUp(self) -> None:
        self.handler = DefaultArgumentHandler()

    def test_kwargs_x(self):
        mono_data = {"X": "This is a sample input"}
        mono_args = self.handler(**mono_data)

        self.assertTrue(isinstance(mono_args, list))
        self.assertEqual(len(mono_args), 1)

        multi_data = {"x": ["This is a sample input", "This is a second sample input"]}
        multi_args = self.handler(**multi_data)

        self.assertTrue(isinstance(multi_args, list))
        self.assertEqual(len(multi_args), 2)

    def test_kwargs_data(self):
        mono_data = {"data": "This is a sample input"}
        mono_args = self.handler(**mono_data)

        self.assertTrue(isinstance(mono_args, list))
        self.assertEqual(len(mono_args), 1)

        multi_data = {"data": ["This is a sample input", "This is a second sample input"]}
        multi_args = self.handler(**multi_data)

        self.assertTrue(isinstance(multi_args, list))
        self.assertEqual(len(multi_args), 2)

    def test_multi_kwargs(self):
        mono_data = {"data": "This is a sample input", "X": "This is a sample input 2"}
        mono_args = self.handler(**mono_data)

        self.assertTrue(isinstance(mono_args, list))
        self.assertEqual(len(mono_args), 2)

        multi_data = {
            "data": ["This is a sample input", "This is a second sample input"],
            "test": ["This is a sample input 2", "This is a second sample input 2"],
        }
        multi_args = self.handler(**multi_data)

        self.assertTrue(isinstance(multi_args, list))
        self.assertEqual(len(multi_args), 4)

    def test_args(self):
        mono_data = "This is a sample input"
        mono_args = self.handler(mono_data)

        self.assertTrue(isinstance(mono_args, list))
        self.assertEqual(len(mono_args), 1)

        mono_data = ["This is a sample input"]
        mono_args = self.handler(mono_data)

        self.assertTrue(isinstance(mono_args, list))
        self.assertEqual(len(mono_args), 1)

        multi_data = ["This is a sample input", "This is a second sample input"]
        multi_args = self.handler(multi_data)

        self.assertTrue(isinstance(multi_args, list))
        self.assertEqual(len(multi_args), 2)

        multi_data = ["This is a sample input", "This is a second sample input"]
        multi_args = self.handler(*multi_data)

        self.assertTrue(isinstance(multi_args, list))
        self.assertEqual(len(multi_args), 2)


Morgan Funtowicz's avatar
Morgan Funtowicz committed
166
class MonoColumnInputTestCase(unittest.TestCase):
Julien Chaumond's avatar
Julien Chaumond committed
167
168
169
170
171
172
173
174
175
    def _test_mono_column_pipeline(
        self,
        nlp: Pipeline,
        valid_inputs: List,
        invalid_inputs: List,
        output_keys: Iterable[str],
        expected_multi_result: Optional[List] = None,
        expected_check_keys: Optional[List[str]] = None,
    ):
Morgan Funtowicz's avatar
Morgan Funtowicz committed
176
177
178
179
180
181
182
183
184
185
186
187
        self.assertIsNotNone(nlp)

        mono_result = nlp(valid_inputs[0])
        self.assertIsInstance(mono_result, list)
        self.assertIsInstance(mono_result[0], (dict, list))

        if isinstance(mono_result[0], list):
            mono_result = mono_result[0]

        for key in output_keys:
            self.assertIn(key, mono_result[0])

188
        multi_result = [nlp(input) for input in valid_inputs]
Morgan Funtowicz's avatar
Morgan Funtowicz committed
189
190
191
        self.assertIsInstance(multi_result, list)
        self.assertIsInstance(multi_result[0], (dict, list))

Julien Chaumond's avatar
Julien Chaumond committed
192
193
194
195
196
197
198
        if expected_multi_result is not None:
            for result, expect in zip(multi_result, expected_multi_result):
                for key in expected_check_keys or []:
                    self.assertEqual(
                        set([o[key] for o in result]), set([o[key] for o in expect]),
                    )

Morgan Funtowicz's avatar
Morgan Funtowicz committed
199
200
201
202
203
204
205
206
207
        if isinstance(multi_result[0], list):
            multi_result = multi_result[0]

        for result in multi_result:
            for key in output_keys:
                self.assertIn(key, result)

        self.assertRaises(Exception, nlp, invalid_inputs)

208
    @require_torch
Morgan Funtowicz's avatar
Morgan Funtowicz committed
209
    def test_ner(self):
210
211
        mandatory_keys = {"entity", "word", "score"}
        valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
Morgan Funtowicz's avatar
Morgan Funtowicz committed
212
213
        invalid_inputs = [None]
        for tokenizer, model, config in NER_FINETUNED_MODELS:
214
            nlp = pipeline(task="ner", model=model, config=config, tokenizer=tokenizer)
215
            self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, mandatory_keys)
Morgan Funtowicz's avatar
Morgan Funtowicz committed
216

217
218
    @require_tf
    def test_tf_ner(self):
219
220
        mandatory_keys = {"entity", "word", "score"}
        valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
221
        invalid_inputs = [None]
222
        for tokenizer, model, config in TF_NER_FINETUNED_MODELS:
223
            nlp = pipeline(task="ner", model=model, config=config, tokenizer=tokenizer, framework="tf")
224
            self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, mandatory_keys)
Morgan Funtowicz's avatar
Morgan Funtowicz committed
225

226
    @require_torch
Morgan Funtowicz's avatar
Morgan Funtowicz committed
227
    def test_sentiment_analysis(self):
Julien Chaumond's avatar
Julien Chaumond committed
228
        mandatory_keys = {"label", "score"}
229
        valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
Morgan Funtowicz's avatar
Morgan Funtowicz committed
230
231
        invalid_inputs = [None]
        for tokenizer, model, config in TEXT_CLASSIF_FINETUNED_MODELS:
232
            nlp = pipeline(task="sentiment-analysis", model=model, config=config, tokenizer=tokenizer)
233
            self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, mandatory_keys)
Morgan Funtowicz's avatar
Morgan Funtowicz committed
234

235
236
    @require_tf
    def test_tf_sentiment_analysis(self):
Julien Chaumond's avatar
Julien Chaumond committed
237
        mandatory_keys = {"label", "score"}
238
        valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
239
        invalid_inputs = [None]
240
        for tokenizer, model, config in TF_TEXT_CLASSIF_FINETUNED_MODELS:
241
            nlp = pipeline(task="sentiment-analysis", model=model, config=config, tokenizer=tokenizer, framework="tf")
242
            self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, mandatory_keys)
Morgan Funtowicz's avatar
Morgan Funtowicz committed
243

244
    @require_torch
Julien Chaumond's avatar
Julien Chaumond committed
245
    def test_feature_extraction(self):
246
        valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
Morgan Funtowicz's avatar
Morgan Funtowicz committed
247
248
        invalid_inputs = [None]
        for tokenizer, model, config in FEATURE_EXTRACT_FINETUNED_MODELS:
Julien Chaumond's avatar
Julien Chaumond committed
249
            nlp = pipeline(task="feature-extraction", model=model, config=config, tokenizer=tokenizer)
250
            self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, {})
Morgan Funtowicz's avatar
Morgan Funtowicz committed
251

252
    @require_tf
Julien Chaumond's avatar
Julien Chaumond committed
253
    def test_tf_feature_extraction(self):
254
        valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
255
        invalid_inputs = [None]
256
        for tokenizer, model, config in TF_FEATURE_EXTRACT_FINETUNED_MODELS:
257
            nlp = pipeline(task="feature-extraction", model=model, config=config, tokenizer=tokenizer, framework="tf")
258
            self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, {})
Morgan Funtowicz's avatar
Morgan Funtowicz committed
259

Julien Chaumond's avatar
Julien Chaumond committed
260
261
262
263
264
265
266
267
268
269
    @require_torch
    def test_fill_mask(self):
        mandatory_keys = {"sequence", "score", "token"}
        valid_inputs = [
            "My name is <mask>",
            "The largest city in France is <mask>",
        ]
        invalid_inputs = [None]
        expected_multi_result = [
            [
270
271
                {"sequence": "<s> My name is:</s>", "score": 0.009954338893294334, "token": 35},
                {"sequence": "<s> My name is John</s>", "score": 0.0080940006300807, "token": 610},
Julien Chaumond's avatar
Julien Chaumond committed
272
273
274
            ],
            [
                {
275
276
277
278
279
280
281
                    "sequence": "<s> The largest city in France is Paris</s>",
                    "score": 0.3185044229030609,
                    "token": 2201,
                },
                {
                    "sequence": "<s> The largest city in France is Lyon</s>",
                    "score": 0.21112334728240967,
Julien Chaumond's avatar
Julien Chaumond committed
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
                    "token": 12790,
                },
            ],
        ]
        for tokenizer, model, config in FILL_MASK_FINETUNED_MODELS:
            nlp = pipeline(task="fill-mask", model=model, config=config, tokenizer=tokenizer, topk=2)
            self._test_mono_column_pipeline(
                nlp,
                valid_inputs,
                invalid_inputs,
                mandatory_keys,
                expected_multi_result=expected_multi_result,
                expected_check_keys=["sequence"],
            )

    @require_tf
    def test_tf_fill_mask(self):
        mandatory_keys = {"sequence", "score", "token"}
        valid_inputs = [
            "My name is <mask>",
            "The largest city in France is <mask>",
        ]
        invalid_inputs = [None]
        expected_multi_result = [
            [
307
308
                {"sequence": "<s> My name is:</s>", "score": 0.009954338893294334, "token": 35},
                {"sequence": "<s> My name is John</s>", "score": 0.0080940006300807, "token": 610},
Julien Chaumond's avatar
Julien Chaumond committed
309
310
311
            ],
            [
                {
312
313
314
315
316
317
318
                    "sequence": "<s> The largest city in France is Paris</s>",
                    "score": 0.3185044229030609,
                    "token": 2201,
                },
                {
                    "sequence": "<s> The largest city in France is Lyon</s>",
                    "score": 0.21112334728240967,
Julien Chaumond's avatar
Julien Chaumond committed
319
320
321
322
323
                    "token": 12790,
                },
            ],
        ]
        for tokenizer, model, config in TF_FILL_MASK_FINETUNED_MODELS:
324
            nlp = pipeline(task="fill-mask", model=model, config=config, tokenizer=tokenizer, framework="tf", topk=2)
Julien Chaumond's avatar
Julien Chaumond committed
325
326
327
328
329
330
331
332
333
            self._test_mono_column_pipeline(
                nlp,
                valid_inputs,
                invalid_inputs,
                mandatory_keys,
                expected_multi_result=expected_multi_result,
                expected_check_keys=["sequence"],
            )

334
335
336
337
338
    @require_torch
    def test_summarization(self):
        valid_inputs = ["A string like this", ["list of strings entry 1", "list of strings v2"]]
        invalid_inputs = [4, "<mask>"]
        mandatory_keys = ["summary_text"]
339
340
341
342
343
344
345
346
347
348
349
350
351
352
        for model, tokenizer in SUMMARIZATION_FINETUNED_MODELS:
            nlp = pipeline(task="summarization", model=model, tokenizer=tokenizer)
            self._test_mono_column_pipeline(
                nlp, valid_inputs, invalid_inputs, mandatory_keys,
            )

    @require_tf
    def test_tf_summarization(self):
        valid_inputs = ["A string like this", ["list of strings entry 1", "list of strings v2"]]
        invalid_inputs = [4, "<mask>"]
        mandatory_keys = ["summary_text"]
        for model, tokenizer in TF_SUMMARIZATION_FINETUNED_MODELS:
            nlp = pipeline(task="summarization", model=model, tokenizer=tokenizer, framework="tf")
            self._test_mono_column_pipeline(
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
                nlp, valid_inputs, invalid_inputs, mandatory_keys,
            )

    @require_torch
    def test_translation(self):
        valid_inputs = ["A string like this", ["list of strings entry 1", "list of strings v2"]]
        invalid_inputs = [4, "<mask>"]
        mandatory_keys = ["translation_text"]
        for model, tokenizer, task in TRANSLATION_FINETUNED_MODELS:
            nlp = pipeline(task=task, model=model, tokenizer=tokenizer)
            self._test_mono_column_pipeline(
                nlp, valid_inputs, invalid_inputs, mandatory_keys,
            )

    @require_tf
    def test_tf_translation(self):
        valid_inputs = ["A string like this", ["list of strings entry 1", "list of strings v2"]]
        invalid_inputs = [4, "<mask>"]
        mandatory_keys = ["translation_text"]
        for model, tokenizer, task in TF_TRANSLATION_FINETUNED_MODELS:
            nlp = pipeline(task=task, model=model, tokenizer=tokenizer, framework="tf")
            self._test_mono_column_pipeline(
375
376
                nlp, valid_inputs, invalid_inputs, mandatory_keys,
            )
377

378
379
380
381
382
383
384
385
    @require_torch
    def test_text_generation(self):
        valid_inputs = ["A string like this", ["list of strings entry 1", "list of strings v2"]]
        invalid_inputs = [None]
        for model, tokenizer in TEXT_GENERATION_FINETUNED_MODELS:
            nlp = pipeline(task="text-generation", model=model, tokenizer=tokenizer, framework="pt")
            self._test_mono_column_pipeline(
                nlp, valid_inputs, invalid_inputs, {},
386
387
388
389
390
391
392
393
394
395
            )

    @require_tf
    def test_tf_text_generation(self):
        valid_inputs = ["A string like this", ["list of strings entry 1", "list of strings v2"]]
        invalid_inputs = [None]
        for model, tokenizer in TF_TEXT_GENERATION_FINETUNED_MODELS:
            nlp = pipeline(task="text-generation", model=model, tokenizer=tokenizer, framework="tf")
            self._test_mono_column_pipeline(
                nlp, valid_inputs, invalid_inputs, {},
396
397
            )

Morgan Funtowicz's avatar
Morgan Funtowicz committed
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419

class MultiColumnInputTestCase(unittest.TestCase):
    def _test_multicolumn_pipeline(self, nlp, valid_inputs: list, invalid_inputs: list, output_keys: Iterable[str]):
        self.assertIsNotNone(nlp)

        mono_result = nlp(valid_inputs[0])
        self.assertIsInstance(mono_result, dict)

        for key in output_keys:
            self.assertIn(key, mono_result)

        multi_result = nlp(valid_inputs)
        self.assertIsInstance(multi_result, list)
        self.assertIsInstance(multi_result[0], dict)

        for result in multi_result:
            for key in output_keys:
                self.assertIn(key, result)

        self.assertRaises(Exception, nlp, invalid_inputs[0])
        self.assertRaises(Exception, nlp, invalid_inputs)

420
    @require_torch
Morgan Funtowicz's avatar
Morgan Funtowicz committed
421
    def test_question_answering(self):
422
        mandatory_output_keys = {"score", "answer", "start", "end"}
Morgan Funtowicz's avatar
Morgan Funtowicz committed
423
        valid_samples = [
424
            {"question": "Where was HuggingFace founded ?", "context": "HuggingFace was founded in Paris."},
Morgan Funtowicz's avatar
Morgan Funtowicz committed
425
            {
426
427
428
                "question": "In what field is HuggingFace working ?",
                "context": "HuggingFace is a startup based in New-York founded in Paris which is trying to solve NLP.",
            },
Morgan Funtowicz's avatar
Morgan Funtowicz committed
429
430
        ]
        invalid_samples = [
431
432
433
434
            {"question": "", "context": "This is a test to try empty question edge case"},
            {"question": None, "context": "This is a test to try empty question edge case"},
            {"question": "What is does with empty context ?", "context": ""},
            {"question": "What is does with empty context ?", "context": None},
Morgan Funtowicz's avatar
Morgan Funtowicz committed
435
436
437
        ]

        for tokenizer, model, config in QA_FINETUNED_MODELS:
438
            nlp = pipeline(task="question-answering", model=model, config=config, tokenizer=tokenizer)
439
            self._test_multicolumn_pipeline(nlp, valid_samples, invalid_samples, mandatory_output_keys)
Morgan Funtowicz's avatar
Morgan Funtowicz committed
440

441
    @require_tf
Lysandre's avatar
Lysandre committed
442
    @slow
443
    def test_tf_question_answering(self):
444
        mandatory_output_keys = {"score", "answer", "start", "end"}
445
        valid_samples = [
446
            {"question": "Where was HuggingFace founded ?", "context": "HuggingFace was founded in Paris."},
447
            {
448
449
450
                "question": "In what field is HuggingFace working ?",
                "context": "HuggingFace is a startup based in New-York founded in Paris which is trying to solve NLP.",
            },
451
452
        ]
        invalid_samples = [
453
454
455
456
            {"question": "", "context": "This is a test to try empty question edge case"},
            {"question": None, "context": "This is a test to try empty question edge case"},
            {"question": "What is does with empty context ?", "context": ""},
            {"question": "What is does with empty context ?", "context": None},
457
        ]
Morgan Funtowicz's avatar
Morgan Funtowicz committed
458

459
        for tokenizer, model, config in TF_QA_FINETUNED_MODELS:
460
            nlp = pipeline(task="question-answering", model=model, config=config, tokenizer=tokenizer, framework="tf")
461
            self._test_multicolumn_pipeline(nlp, valid_samples, invalid_samples, mandatory_output_keys)
Lysandre Debut's avatar
Lysandre Debut committed
462
463
464
465
466


class PipelineCommonTests(unittest.TestCase):

    pipelines = (
Patrick von Platen's avatar
Patrick von Platen committed
467
468
469
470
471
472
473
474
475
        "ner",
        "feature-extraction",
        "question-answering",
        "fill-mask",
        "summarization",
        "sentiment-analysis",
        "translation_en_to_fr",
        "translation_en_to_de",
        "translation_en_to_ro",
476
        "text-generation",
Lysandre Debut's avatar
Lysandre Debut committed
477
478
479
480
481
482
    )

    @slow
    @require_tf
    def test_tf_defaults(self):
        # Test that pipelines can be correctly loaded without any argument
Patrick von Platen's avatar
Patrick von Platen committed
483
484
485
        for task in self.pipelines:
            with self.subTest(msg="Testing Torch defaults with PyTorch and {}".format(task)):
                pipeline(task, framework="tf")
Lysandre Debut's avatar
Lysandre Debut committed
486
487
488
489
490

    @slow
    @require_torch
    def test_pt_defaults(self):
        # Test that pipelines can be correctly loaded without any argument
Patrick von Platen's avatar
Patrick von Platen committed
491
492
493
        for task in self.pipelines:
            with self.subTest(msg="Testing Torch defaults with PyTorch and {}".format(task)):
                pipeline(task, framework="pt")