".circleci/unittest/vscode:/vscode.git/clone" did not exist on "e45489b1baf76c7127d65a43f44a2c269daf2ae6"
roformer.md 4.79 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
<!--Copyright 2021 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
11
12
13
14

鈿狅笍 Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.

Sylvain Gugger's avatar
Sylvain Gugger committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
-->

# RoFormer

## Overview

The RoFormer model was proposed in [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/pdf/2104.09864v1.pdf) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.

The abstract from the paper is the following:

*Position encoding in transformer architecture provides supervision for dependency modeling between elements at
different positions in the sequence. We investigate various methods to encode positional information in
transformer-based language models and propose a novel implementation named Rotary Position Embedding(RoPE). The
proposed RoPE encodes absolute positional information with rotation matrix and naturally incorporates explicit relative
position dependency in self-attention formulation. Notably, RoPE comes with valuable properties such as flexibility of
being expand to any sequence lengths, decaying inter-token dependency with increasing relative distances, and
capability of equipping the linear self-attention with relative position encoding. As a result, the enhanced
transformer with rotary position embedding, or RoFormer, achieves superior performance in tasks with long texts. We
release the theoretical analysis along with some preliminary experiment results on Chinese data. The undergoing
experiment for English benchmark will soon be updated.*

Tips:

- RoFormer is a BERT-like autoencoding model with rotary position embeddings. Rotary position embeddings have shown
  improved performance on classification tasks with long texts.


This model was contributed by [junnyu](https://huggingface.co/junnyu). The original code can be found [here](https://github.com/ZhuiyiTechnology/roformer).

44
45
## Documentation resources

46
47
48
49
50
51
- [Text classification task guide](../tasks/sequence_classification)
- [Token classification task guide](../tasks/token_classification)
- [Question answering task guide](../tasks/question_answering)
- [Causal language modeling task guide](../tasks/language_modeling)
- [Masked language modeling task guide](../tasks/masked_language_modeling)
- [Multiple choice task guide](../tasks/multiple_choice)
52

Sylvain Gugger's avatar
Sylvain Gugger committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
## RoFormerConfig

[[autodoc]] RoFormerConfig

## RoFormerTokenizer

[[autodoc]] RoFormerTokenizer
    - build_inputs_with_special_tokens
    - get_special_tokens_mask
    - create_token_type_ids_from_sequences
    - save_vocabulary

## RoFormerTokenizerFast

[[autodoc]] RoFormerTokenizerFast
    - build_inputs_with_special_tokens

## RoFormerModel

[[autodoc]] RoFormerModel
    - forward

## RoFormerForCausalLM

[[autodoc]] RoFormerForCausalLM
    - forward

## RoFormerForMaskedLM

[[autodoc]] RoFormerForMaskedLM
    - forward

## RoFormerForSequenceClassification

[[autodoc]] RoFormerForSequenceClassification
    - forward

## RoFormerForMultipleChoice

[[autodoc]] RoFormerForMultipleChoice
    - forward

## RoFormerForTokenClassification

[[autodoc]] RoFormerForTokenClassification
    - forward

## RoFormerForQuestionAnswering

[[autodoc]] RoFormerForQuestionAnswering
    - forward

## TFRoFormerModel

[[autodoc]] TFRoFormerModel
    - call

## TFRoFormerForMaskedLM

[[autodoc]] TFRoFormerForMaskedLM
    - call

## TFRoFormerForCausalLM

[[autodoc]] TFRoFormerForCausalLM
    - call

## TFRoFormerForSequenceClassification

[[autodoc]] TFRoFormerForSequenceClassification
    - call

## TFRoFormerForMultipleChoice

[[autodoc]] TFRoFormerForMultipleChoice
    - call

## TFRoFormerForTokenClassification

[[autodoc]] TFRoFormerForTokenClassification
    - call

## TFRoFormerForQuestionAnswering

[[autodoc]] TFRoFormerForQuestionAnswering
    - call
Daniel Stancl's avatar
Daniel Stancl committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

## FlaxRoFormerModel

[[autodoc]] FlaxRoFormerModel
    - __call__

## FlaxRoFormerForMaskedLM

[[autodoc]] FlaxRoFormerForMaskedLM
    - __call__

## FlaxRoFormerForSequenceClassification

[[autodoc]] FlaxRoFormerForSequenceClassification
    - __call__

## FlaxRoFormerForMultipleChoice

[[autodoc]] FlaxRoFormerForMultipleChoice
    - __call__

## FlaxRoFormerForTokenClassification

[[autodoc]] FlaxRoFormerForTokenClassification
    - __call__

## FlaxRoFormerForQuestionAnswering

[[autodoc]] FlaxRoFormerForQuestionAnswering
    - __call__