test_pipelines_table_question_answering.py 30.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

17
18
19
20
21
from transformers import (
    MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING,
    AutoModelForTableQuestionAnswering,
    AutoTokenizer,
    TableQuestionAnsweringPipeline,
Kamal Raj's avatar
Kamal Raj committed
22
    TFAutoModelForTableQuestionAnswering,
23
    is_torch_available,
24
25
    pipeline,
)
26
27
28
29
30
31
32
33
from transformers.testing_utils import (
    is_pipeline_test,
    require_pandas,
    require_tensorflow_probability,
    require_tf,
    require_torch,
    slow,
)
34
35


36
37
38
39
40
41
if is_torch_available():
    from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_12
else:
    is_torch_greater_or_equal_than_1_12 = False


42
@is_pipeline_test
43
class TQAPipelineTests(unittest.TestCase):
44
45
46
47
    # Putting it there for consistency, but TQA do not have fast tokenizer
    # which are needed to generate automatic tests
    model_mapping = MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING

48
49
    @require_tensorflow_probability
    @require_pandas
50
    @require_tf
51
    @require_torch
52
    def test_small_model_tf(self):
Kamal Raj's avatar
Kamal Raj committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
        model_id = "lysandre/tiny-tapas-random-wtq"
        model = TFAutoModelForTableQuestionAnswering.from_pretrained(model_id, from_pt=True)
        tokenizer = AutoTokenizer.from_pretrained(model_id)
        self.assertIsInstance(model.config.aggregation_labels, dict)
        self.assertIsInstance(model.config.no_aggregation_label_index, int)

        table_querier = TableQuestionAnsweringPipeline(model=model, tokenizer=tokenizer)
        outputs = table_querier(
            table={
                "actors": ["brad pitt", "leonardo di caprio", "george clooney"],
                "age": ["56", "45", "59"],
                "number of movies": ["87", "53", "69"],
                "date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"],
            },
            query="how many movies has george clooney played in?",
        )
        self.assertEqual(
            outputs,
            {"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
        )
        outputs = table_querier(
            table={
                "actors": ["brad pitt", "leonardo di caprio", "george clooney"],
                "age": ["56", "45", "59"],
                "number of movies": ["87", "53", "69"],
                "date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"],
            },
            query=["how many movies has george clooney played in?", "how old is he?", "what's his date of birth?"],
        )
        self.assertEqual(
            outputs,
            [
                {"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
                {"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
                {"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
            ],
        )
        outputs = table_querier(
            table={
                "Repository": ["Transformers", "Datasets", "Tokenizers"],
                "Stars": ["36542", "4512", "3934"],
                "Contributors": ["651", "77", "34"],
                "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
            },
            query=[
                "What repository has the largest number of stars?",
Sylvain Gugger's avatar
Sylvain Gugger committed
99
100
                "Given that the numbers of stars defines if a repository is active, what repository is the most"
                " active?",
Kamal Raj's avatar
Kamal Raj committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
                "What is the number of repositories?",
                "What is the average number of stars?",
                "What is the total amount of stars?",
            ],
        )
        self.assertEqual(
            outputs,
            [
                {"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
                {"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
                {"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
                {"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
                {"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
            ],
        )

        with self.assertRaises(ValueError):
            table_querier(query="What does it do with empty context ?", table=None)
        with self.assertRaises(ValueError):
            table_querier(query="What does it do with empty context ?", table="")
        with self.assertRaises(ValueError):
            table_querier(query="What does it do with empty context ?", table={})
        with self.assertRaises(ValueError):
            table_querier(
                table={
                    "Repository": ["Transformers", "Datasets", "Tokenizers"],
                    "Stars": ["36542", "4512", "3934"],
                    "Contributors": ["651", "77", "34"],
                    "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
                }
            )
        with self.assertRaises(ValueError):
            table_querier(
                query="",
                table={
                    "Repository": ["Transformers", "Datasets", "Tokenizers"],
                    "Stars": ["36542", "4512", "3934"],
                    "Contributors": ["651", "77", "34"],
                    "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
                },
            )
        with self.assertRaises(ValueError):
            table_querier(
                query=None,
                table={
                    "Repository": ["Transformers", "Datasets", "Tokenizers"],
                    "Stars": ["36542", "4512", "3934"],
                    "Contributors": ["651", "77", "34"],
                    "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
                },
            )
152

153
    @unittest.skipIf(not is_torch_greater_or_equal_than_1_12, reason="Tapas is only available in torch v1.12+")
154
155
156
157
158
159
160
161
162
163
164
    @require_torch
    def test_small_model_pt(self):
        model_id = "lysandre/tiny-tapas-random-wtq"
        model = AutoModelForTableQuestionAnswering.from_pretrained(model_id)
        tokenizer = AutoTokenizer.from_pretrained(model_id)
        self.assertIsInstance(model.config.aggregation_labels, dict)
        self.assertIsInstance(model.config.no_aggregation_label_index, int)

        table_querier = TableQuestionAnsweringPipeline(model=model, tokenizer=tokenizer)
        outputs = table_querier(
            table={
165
166
167
168
169
                "actors": ["brad pitt", "leonardo di caprio", "george clooney"],
                "age": ["56", "45", "59"],
                "number of movies": ["87", "53", "69"],
                "date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"],
            },
170
171
172
173
174
175
176
177
            query="how many movies has george clooney played in?",
        )
        self.assertEqual(
            outputs,
            {"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
        )
        outputs = table_querier(
            table={
178
179
180
181
182
                "actors": ["brad pitt", "leonardo di caprio", "george clooney"],
                "age": ["56", "45", "59"],
                "number of movies": ["87", "53", "69"],
                "date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"],
            },
183
184
185
186
187
188
189
190
191
192
193
194
            query=["how many movies has george clooney played in?", "how old is he?", "what's his date of birth?"],
        )
        self.assertEqual(
            outputs,
            [
                {"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
                {"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
                {"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
            ],
        )
        outputs = table_querier(
            table={
195
196
197
198
199
                "Repository": ["Transformers", "Datasets", "Tokenizers"],
                "Stars": ["36542", "4512", "3934"],
                "Contributors": ["651", "77", "34"],
                "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
            },
200
            query=[
201
                "What repository has the largest number of stars?",
Sylvain Gugger's avatar
Sylvain Gugger committed
202
203
                "Given that the numbers of stars defines if a repository is active, what repository is the most"
                " active?",
204
205
206
207
208
                "What is the number of repositories?",
                "What is the average number of stars?",
                "What is the total amount of stars?",
            ],
        )
209
210
211
212
213
214
215
216
217
        self.assertEqual(
            outputs,
            [
                {"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
                {"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
                {"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
                {"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
                {"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
            ],
218
219
        )

220
        with self.assertRaises(ValueError):
221
222
223
224
225
            table_querier(query="What does it do with empty context ?", table=None)
        with self.assertRaises(ValueError):
            table_querier(query="What does it do with empty context ?", table="")
        with self.assertRaises(ValueError):
            table_querier(query="What does it do with empty context ?", table={})
226
227
        with self.assertRaises(ValueError):
            table_querier(
228
229
230
231
232
                table={
                    "Repository": ["Transformers", "Datasets", "Tokenizers"],
                    "Stars": ["36542", "4512", "3934"],
                    "Contributors": ["651", "77", "34"],
                    "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
233
234
235
236
                }
            )
        with self.assertRaises(ValueError):
            table_querier(
237
238
239
240
241
242
243
                query="",
                table={
                    "Repository": ["Transformers", "Datasets", "Tokenizers"],
                    "Stars": ["36542", "4512", "3934"],
                    "Contributors": ["651", "77", "34"],
                    "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
                },
244
245
246
            )
        with self.assertRaises(ValueError):
            table_querier(
247
248
249
250
251
252
253
                query=None,
                table={
                    "Repository": ["Transformers", "Datasets", "Tokenizers"],
                    "Stars": ["36542", "4512", "3934"],
                    "Contributors": ["651", "77", "34"],
                    "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
                },
254
255
            )

256
    @unittest.skipIf(not is_torch_greater_or_equal_than_1_12, reason="Tapas is only available in torch v1.12+")
Kamal Raj's avatar
Kamal Raj committed
257
258
    @require_torch
    def test_slow_tokenizer_sqa_pt(self):
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
        model_id = "lysandre/tiny-tapas-random-sqa"
        model = AutoModelForTableQuestionAnswering.from_pretrained(model_id)
        tokenizer = AutoTokenizer.from_pretrained(model_id)
        table_querier = TableQuestionAnsweringPipeline(model=model, tokenizer=tokenizer)

        inputs = {
            "table": {
                "actors": ["brad pitt", "leonardo di caprio", "george clooney"],
                "age": ["56", "45", "59"],
                "number of movies": ["87", "53", "69"],
                "date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"],
            },
            "query": ["how many movies has george clooney played in?", "how old is he?", "what's his date of birth?"],
        }
        sequential_outputs = table_querier(**inputs, sequential=True)
        batch_outputs = table_querier(**inputs, sequential=False)

        self.assertEqual(len(sequential_outputs), 3)
        self.assertEqual(len(batch_outputs), 3)
        self.assertEqual(sequential_outputs[0], batch_outputs[0])
        self.assertNotEqual(sequential_outputs[1], batch_outputs[1])
        # self.assertNotEqual(sequential_outputs[2], batch_outputs[2])

        table_querier = TableQuestionAnsweringPipeline(model=model, tokenizer=tokenizer)
        outputs = table_querier(
            table={
                "actors": ["brad pitt", "leonardo di caprio", "george clooney"],
                "age": ["56", "45", "59"],
                "number of movies": ["87", "53", "69"],
                "date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"],
            },
            query="how many movies has george clooney played in?",
291
        )
292
293
294
        self.assertEqual(
            outputs,
            {"answer": "7 february 1967", "coordinates": [(0, 3)], "cells": ["7 february 1967"]},
295
        )
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
        outputs = table_querier(
            table={
                "actors": ["brad pitt", "leonardo di caprio", "george clooney"],
                "age": ["56", "45", "59"],
                "number of movies": ["87", "53", "69"],
                "date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"],
            },
            query=["how many movies has george clooney played in?", "how old is he?", "what's his date of birth?"],
        )
        self.assertEqual(
            outputs,
            [
                {"answer": "7 february 1967", "coordinates": [(0, 3)], "cells": ["7 february 1967"]},
                {"answer": "7 february 1967", "coordinates": [(0, 3)], "cells": ["7 february 1967"]},
                {"answer": "7 february 1967", "coordinates": [(0, 3)], "cells": ["7 february 1967"]},
            ],
        )
        outputs = table_querier(
            table={
                "Repository": ["Transformers", "Datasets", "Tokenizers"],
                "Stars": ["36542", "4512", "3934"],
                "Contributors": ["651", "77", "34"],
                "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
            },
            query=[
                "What repository has the largest number of stars?",
Sylvain Gugger's avatar
Sylvain Gugger committed
322
323
                "Given that the numbers of stars defines if a repository is active, what repository is the most"
                " active?",
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
                "What is the number of repositories?",
                "What is the average number of stars?",
                "What is the total amount of stars?",
            ],
        )
        self.assertEqual(
            outputs,
            [
                {"answer": "Python, Python", "coordinates": [(0, 3), (1, 3)], "cells": ["Python", "Python"]},
                {"answer": "Python, Python", "coordinates": [(0, 3), (1, 3)], "cells": ["Python", "Python"]},
                {"answer": "Python, Python", "coordinates": [(0, 3), (1, 3)], "cells": ["Python", "Python"]},
                {"answer": "Python, Python", "coordinates": [(0, 3), (1, 3)], "cells": ["Python", "Python"]},
                {"answer": "Python, Python", "coordinates": [(0, 3), (1, 3)], "cells": ["Python", "Python"]},
            ],
        )

        with self.assertRaises(ValueError):
            table_querier(query="What does it do with empty context ?", table=None)
        with self.assertRaises(ValueError):
            table_querier(query="What does it do with empty context ?", table="")
        with self.assertRaises(ValueError):
            table_querier(query="What does it do with empty context ?", table={})
        with self.assertRaises(ValueError):
            table_querier(
                table={
                    "Repository": ["Transformers", "Datasets", "Tokenizers"],
                    "Stars": ["36542", "4512", "3934"],
                    "Contributors": ["651", "77", "34"],
                    "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
                }
            )
        with self.assertRaises(ValueError):
            table_querier(
                query="",
                table={
                    "Repository": ["Transformers", "Datasets", "Tokenizers"],
                    "Stars": ["36542", "4512", "3934"],
                    "Contributors": ["651", "77", "34"],
                    "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
                },
            )
        with self.assertRaises(ValueError):
            table_querier(
                query=None,
                table={
                    "Repository": ["Transformers", "Datasets", "Tokenizers"],
                    "Stars": ["36542", "4512", "3934"],
                    "Contributors": ["651", "77", "34"],
                    "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
                },
            )
375

Kamal Raj's avatar
Kamal Raj committed
376
    @require_tf
377
378
379
    @require_tensorflow_probability
    @require_pandas
    @require_torch
Kamal Raj's avatar
Kamal Raj committed
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
    def test_slow_tokenizer_sqa_tf(self):
        model_id = "lysandre/tiny-tapas-random-sqa"
        model = TFAutoModelForTableQuestionAnswering.from_pretrained(model_id, from_pt=True)
        tokenizer = AutoTokenizer.from_pretrained(model_id)
        table_querier = TableQuestionAnsweringPipeline(model=model, tokenizer=tokenizer)

        inputs = {
            "table": {
                "actors": ["brad pitt", "leonardo di caprio", "george clooney"],
                "age": ["56", "45", "59"],
                "number of movies": ["87", "53", "69"],
                "date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"],
            },
            "query": ["how many movies has george clooney played in?", "how old is he?", "what's his date of birth?"],
        }
        sequential_outputs = table_querier(**inputs, sequential=True)
        batch_outputs = table_querier(**inputs, sequential=False)

        self.assertEqual(len(sequential_outputs), 3)
        self.assertEqual(len(batch_outputs), 3)
        self.assertEqual(sequential_outputs[0], batch_outputs[0])
        self.assertNotEqual(sequential_outputs[1], batch_outputs[1])
        # self.assertNotEqual(sequential_outputs[2], batch_outputs[2])

        table_querier = TableQuestionAnsweringPipeline(model=model, tokenizer=tokenizer)
        outputs = table_querier(
            table={
                "actors": ["brad pitt", "leonardo di caprio", "george clooney"],
                "age": ["56", "45", "59"],
                "number of movies": ["87", "53", "69"],
                "date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"],
            },
            query="how many movies has george clooney played in?",
        )
        self.assertEqual(
            outputs,
            {"answer": "7 february 1967", "coordinates": [(0, 3)], "cells": ["7 february 1967"]},
        )
        outputs = table_querier(
            table={
                "actors": ["brad pitt", "leonardo di caprio", "george clooney"],
                "age": ["56", "45", "59"],
                "number of movies": ["87", "53", "69"],
                "date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"],
            },
            query=["how many movies has george clooney played in?", "how old is he?", "what's his date of birth?"],
        )
        self.assertEqual(
            outputs,
            [
                {"answer": "7 february 1967", "coordinates": [(0, 3)], "cells": ["7 february 1967"]},
                {"answer": "7 february 1967", "coordinates": [(0, 3)], "cells": ["7 february 1967"]},
                {"answer": "7 february 1967", "coordinates": [(0, 3)], "cells": ["7 february 1967"]},
            ],
        )
        outputs = table_querier(
            table={
                "Repository": ["Transformers", "Datasets", "Tokenizers"],
                "Stars": ["36542", "4512", "3934"],
                "Contributors": ["651", "77", "34"],
                "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
            },
            query=[
                "What repository has the largest number of stars?",
Sylvain Gugger's avatar
Sylvain Gugger committed
444
445
                "Given that the numbers of stars defines if a repository is active, what repository is the most"
                " active?",
Kamal Raj's avatar
Kamal Raj committed
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
                "What is the number of repositories?",
                "What is the average number of stars?",
                "What is the total amount of stars?",
            ],
        )
        self.assertEqual(
            outputs,
            [
                {"answer": "Python, Python", "coordinates": [(0, 3), (1, 3)], "cells": ["Python", "Python"]},
                {"answer": "Python, Python", "coordinates": [(0, 3), (1, 3)], "cells": ["Python", "Python"]},
                {"answer": "Python, Python", "coordinates": [(0, 3), (1, 3)], "cells": ["Python", "Python"]},
                {"answer": "Python, Python", "coordinates": [(0, 3), (1, 3)], "cells": ["Python", "Python"]},
                {"answer": "Python, Python", "coordinates": [(0, 3), (1, 3)], "cells": ["Python", "Python"]},
            ],
        )

        with self.assertRaises(ValueError):
            table_querier(query="What does it do with empty context ?", table=None)
        with self.assertRaises(ValueError):
            table_querier(query="What does it do with empty context ?", table="")
        with self.assertRaises(ValueError):
            table_querier(query="What does it do with empty context ?", table={})
        with self.assertRaises(ValueError):
            table_querier(
                table={
                    "Repository": ["Transformers", "Datasets", "Tokenizers"],
                    "Stars": ["36542", "4512", "3934"],
                    "Contributors": ["651", "77", "34"],
                    "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
                }
            )
        with self.assertRaises(ValueError):
            table_querier(
                query="",
                table={
                    "Repository": ["Transformers", "Datasets", "Tokenizers"],
                    "Stars": ["36542", "4512", "3934"],
                    "Contributors": ["651", "77", "34"],
                    "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
                },
            )
        with self.assertRaises(ValueError):
            table_querier(
                query=None,
                table={
                    "Repository": ["Transformers", "Datasets", "Tokenizers"],
                    "Stars": ["36542", "4512", "3934"],
                    "Contributors": ["651", "77", "34"],
                    "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
                },
            )

498
    @unittest.skipIf(not is_torch_greater_or_equal_than_1_12, reason="Tapas is only available in torch v1.12+")
499
    @slow
500
    @require_torch
Kamal Raj's avatar
Kamal Raj committed
501
    def test_integration_wtq_pt(self):
502
        table_querier = pipeline("table-question-answering")
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517

        data = {
            "Repository": ["Transformers", "Datasets", "Tokenizers"],
            "Stars": ["36542", "4512", "3934"],
            "Contributors": ["651", "77", "34"],
            "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
        }
        queries = [
            "What repository has the largest number of stars?",
            "Given that the numbers of stars defines if a repository is active, what repository is the most active?",
            "What is the number of repositories?",
            "What is the average number of stars?",
            "What is the total amount of stars?",
        ]

518
        results = table_querier(data, queries)
519
520

        expected_results = [
521
522
            {"answer": "Transformers", "coordinates": [(0, 0)], "cells": ["Transformers"], "aggregator": "NONE"},
            {"answer": "Transformers", "coordinates": [(0, 0)], "cells": ["Transformers"], "aggregator": "NONE"},
523
            {
524
                "answer": "COUNT > Transformers, Datasets, Tokenizers",
525
526
                "coordinates": [(0, 0), (1, 0), (2, 0)],
                "cells": ["Transformers", "Datasets", "Tokenizers"],
527
                "aggregator": "COUNT",
528
529
            },
            {
530
                "answer": "AVERAGE > 36542, 4512, 3934",
531
532
                "coordinates": [(0, 1), (1, 1), (2, 1)],
                "cells": ["36542", "4512", "3934"],
533
                "aggregator": "AVERAGE",
534
535
            },
            {
536
                "answer": "SUM > 36542, 4512, 3934",
537
538
                "coordinates": [(0, 1), (1, 1), (2, 1)],
                "cells": ["36542", "4512", "3934"],
539
                "aggregator": "SUM",
540
541
542
543
544
            },
        ]
        self.assertListEqual(results, expected_results)

    @slow
545
546
    @require_tensorflow_probability
    @require_pandas
Kamal Raj's avatar
Kamal Raj committed
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
    def test_integration_wtq_tf(self):
        model_id = "google/tapas-base-finetuned-wtq"
        model = TFAutoModelForTableQuestionAnswering.from_pretrained(model_id)
        tokenizer = AutoTokenizer.from_pretrained(model_id)
        table_querier = pipeline("table-question-answering", model=model, tokenizer=tokenizer)

        data = {
            "Repository": ["Transformers", "Datasets", "Tokenizers"],
            "Stars": ["36542", "4512", "3934"],
            "Contributors": ["651", "77", "34"],
            "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
        }
        queries = [
            "What repository has the largest number of stars?",
            "Given that the numbers of stars defines if a repository is active, what repository is the most active?",
            "What is the number of repositories?",
            "What is the average number of stars?",
            "What is the total amount of stars?",
        ]

        results = table_querier(data, queries)

        expected_results = [
            {"answer": "Transformers", "coordinates": [(0, 0)], "cells": ["Transformers"], "aggregator": "NONE"},
            {"answer": "Transformers", "coordinates": [(0, 0)], "cells": ["Transformers"], "aggregator": "NONE"},
            {
                "answer": "COUNT > Transformers, Datasets, Tokenizers",
                "coordinates": [(0, 0), (1, 0), (2, 0)],
                "cells": ["Transformers", "Datasets", "Tokenizers"],
                "aggregator": "COUNT",
            },
            {
                "answer": "AVERAGE > 36542, 4512, 3934",
                "coordinates": [(0, 1), (1, 1), (2, 1)],
                "cells": ["36542", "4512", "3934"],
                "aggregator": "AVERAGE",
            },
            {
                "answer": "SUM > 36542, 4512, 3934",
                "coordinates": [(0, 1), (1, 1), (2, 1)],
                "cells": ["36542", "4512", "3934"],
                "aggregator": "SUM",
            },
        ]
        self.assertListEqual(results, expected_results)

593
    @unittest.skipIf(not is_torch_greater_or_equal_than_1_12, reason="Tapas is only available in torch v1.12+")
Kamal Raj's avatar
Kamal Raj committed
594
    @slow
595
    @require_torch
Kamal Raj's avatar
Kamal Raj committed
596
    def test_integration_sqa_pt(self):
597
        table_querier = pipeline(
598
            "table-question-answering",
599
600
            model="google/tapas-base-finetuned-sqa",
            tokenizer="google/tapas-base-finetuned-sqa",
601
602
603
604
605
606
607
608
        )
        data = {
            "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"],
            "Age": ["56", "45", "59"],
            "Number of movies": ["87", "53", "69"],
            "Date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"],
        }
        queries = ["How many movies has George Clooney played in?", "How old is he?", "What's his date of birth?"]
609
        results = table_querier(data, queries, sequential=True)
610
611
612
613
614
615
616

        expected_results = [
            {"answer": "69", "coordinates": [(2, 2)], "cells": ["69"]},
            {"answer": "59", "coordinates": [(2, 1)], "cells": ["59"]},
            {"answer": "28 november 1967", "coordinates": [(2, 3)], "cells": ["28 november 1967"]},
        ]
        self.assertListEqual(results, expected_results)
Kamal Raj's avatar
Kamal Raj committed
617
618

    @slow
619
620
    @require_tensorflow_probability
    @require_pandas
Kamal Raj's avatar
Kamal Raj committed
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
    def test_integration_sqa_tf(self):
        model_id = "google/tapas-base-finetuned-sqa"
        model = TFAutoModelForTableQuestionAnswering.from_pretrained(model_id)
        tokenizer = AutoTokenizer.from_pretrained(model_id)
        table_querier = pipeline(
            "table-question-answering",
            model=model,
            tokenizer=tokenizer,
        )
        data = {
            "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"],
            "Age": ["56", "45", "59"],
            "Number of movies": ["87", "53", "69"],
            "Date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"],
        }
        queries = ["How many movies has George Clooney played in?", "How old is he?", "What's his date of birth?"]
        results = table_querier(data, queries, sequential=True)

        expected_results = [
            {"answer": "69", "coordinates": [(2, 2)], "cells": ["69"]},
            {"answer": "59", "coordinates": [(2, 1)], "cells": ["59"]},
            {"answer": "28 november 1967", "coordinates": [(2, 3)], "cells": ["28 november 1967"]},
        ]
        self.assertListEqual(results, expected_results)
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672

    @slow
    @require_torch
    def test_large_model_pt_tapex(self):
        model_id = "microsoft/tapex-large-finetuned-wtq"
        table_querier = pipeline(
            "table-question-answering",
            model=model_id,
        )
        data = {
            "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"],
            "Age": ["56", "45", "59"],
            "Number of movies": ["87", "53", "69"],
            "Date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"],
        }
        queries = [
            "How many movies has George Clooney played in?",
            "How old is Mr Clooney ?",
            "What's the date of birth of Leonardo ?",
        ]
        results = table_querier(data, queries, sequential=True)

        expected_results = [
            {"answer": " 69"},
            {"answer": " 59"},
            {"answer": " 10 june 1996"},
        ]
        self.assertListEqual(results, expected_results)