test_pipelines_table_question_answering.py 29.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

17
18
19
20
21
from transformers import (
    MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING,
    AutoModelForTableQuestionAnswering,
    AutoTokenizer,
    TableQuestionAnsweringPipeline,
Kamal Raj's avatar
Kamal Raj committed
22
    TFAutoModelForTableQuestionAnswering,
23
24
    pipeline,
)
25
from transformers.testing_utils import require_pandas, require_tensorflow_probability, require_tf, require_torch, slow
26

27
from .test_pipelines_common import PipelineTestCaseMeta
28
29


30
31
32
33
34
class TQAPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
    # Putting it there for consistency, but TQA do not have fast tokenizer
    # which are needed to generate automatic tests
    model_mapping = MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING

35
36
    @require_tensorflow_probability
    @require_pandas
37
    @require_tf
38
    @require_torch
39
    def test_small_model_tf(self):
Kamal Raj's avatar
Kamal Raj committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
        model_id = "lysandre/tiny-tapas-random-wtq"
        model = TFAutoModelForTableQuestionAnswering.from_pretrained(model_id, from_pt=True)
        tokenizer = AutoTokenizer.from_pretrained(model_id)
        self.assertIsInstance(model.config.aggregation_labels, dict)
        self.assertIsInstance(model.config.no_aggregation_label_index, int)

        table_querier = TableQuestionAnsweringPipeline(model=model, tokenizer=tokenizer)
        outputs = table_querier(
            table={
                "actors": ["brad pitt", "leonardo di caprio", "george clooney"],
                "age": ["56", "45", "59"],
                "number of movies": ["87", "53", "69"],
                "date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"],
            },
            query="how many movies has george clooney played in?",
        )
        self.assertEqual(
            outputs,
            {"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
        )
        outputs = table_querier(
            table={
                "actors": ["brad pitt", "leonardo di caprio", "george clooney"],
                "age": ["56", "45", "59"],
                "number of movies": ["87", "53", "69"],
                "date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"],
            },
            query=["how many movies has george clooney played in?", "how old is he?", "what's his date of birth?"],
        )
        self.assertEqual(
            outputs,
            [
                {"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
                {"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
                {"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
            ],
        )
        outputs = table_querier(
            table={
                "Repository": ["Transformers", "Datasets", "Tokenizers"],
                "Stars": ["36542", "4512", "3934"],
                "Contributors": ["651", "77", "34"],
                "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
            },
            query=[
                "What repository has the largest number of stars?",
Sylvain Gugger's avatar
Sylvain Gugger committed
86
87
                "Given that the numbers of stars defines if a repository is active, what repository is the most"
                " active?",
Kamal Raj's avatar
Kamal Raj committed
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
                "What is the number of repositories?",
                "What is the average number of stars?",
                "What is the total amount of stars?",
            ],
        )
        self.assertEqual(
            outputs,
            [
                {"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
                {"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
                {"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
                {"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
                {"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
            ],
        )

        with self.assertRaises(ValueError):
            table_querier(query="What does it do with empty context ?", table=None)
        with self.assertRaises(ValueError):
            table_querier(query="What does it do with empty context ?", table="")
        with self.assertRaises(ValueError):
            table_querier(query="What does it do with empty context ?", table={})
        with self.assertRaises(ValueError):
            table_querier(
                table={
                    "Repository": ["Transformers", "Datasets", "Tokenizers"],
                    "Stars": ["36542", "4512", "3934"],
                    "Contributors": ["651", "77", "34"],
                    "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
                }
            )
        with self.assertRaises(ValueError):
            table_querier(
                query="",
                table={
                    "Repository": ["Transformers", "Datasets", "Tokenizers"],
                    "Stars": ["36542", "4512", "3934"],
                    "Contributors": ["651", "77", "34"],
                    "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
                },
            )
        with self.assertRaises(ValueError):
            table_querier(
                query=None,
                table={
                    "Repository": ["Transformers", "Datasets", "Tokenizers"],
                    "Stars": ["36542", "4512", "3934"],
                    "Contributors": ["651", "77", "34"],
                    "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
                },
            )
139
140
141
142
143
144
145
146
147
148
149
150

    @require_torch
    def test_small_model_pt(self):
        model_id = "lysandre/tiny-tapas-random-wtq"
        model = AutoModelForTableQuestionAnswering.from_pretrained(model_id)
        tokenizer = AutoTokenizer.from_pretrained(model_id)
        self.assertIsInstance(model.config.aggregation_labels, dict)
        self.assertIsInstance(model.config.no_aggregation_label_index, int)

        table_querier = TableQuestionAnsweringPipeline(model=model, tokenizer=tokenizer)
        outputs = table_querier(
            table={
151
152
153
154
155
                "actors": ["brad pitt", "leonardo di caprio", "george clooney"],
                "age": ["56", "45", "59"],
                "number of movies": ["87", "53", "69"],
                "date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"],
            },
156
157
158
159
160
161
162
163
            query="how many movies has george clooney played in?",
        )
        self.assertEqual(
            outputs,
            {"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
        )
        outputs = table_querier(
            table={
164
165
166
167
168
                "actors": ["brad pitt", "leonardo di caprio", "george clooney"],
                "age": ["56", "45", "59"],
                "number of movies": ["87", "53", "69"],
                "date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"],
            },
169
170
171
172
173
174
175
176
177
178
179
180
            query=["how many movies has george clooney played in?", "how old is he?", "what's his date of birth?"],
        )
        self.assertEqual(
            outputs,
            [
                {"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
                {"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
                {"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
            ],
        )
        outputs = table_querier(
            table={
181
182
183
184
185
                "Repository": ["Transformers", "Datasets", "Tokenizers"],
                "Stars": ["36542", "4512", "3934"],
                "Contributors": ["651", "77", "34"],
                "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
            },
186
            query=[
187
                "What repository has the largest number of stars?",
Sylvain Gugger's avatar
Sylvain Gugger committed
188
189
                "Given that the numbers of stars defines if a repository is active, what repository is the most"
                " active?",
190
191
192
193
194
                "What is the number of repositories?",
                "What is the average number of stars?",
                "What is the total amount of stars?",
            ],
        )
195
196
197
198
199
200
201
202
203
        self.assertEqual(
            outputs,
            [
                {"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
                {"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
                {"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
                {"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
                {"answer": "AVERAGE > ", "coordinates": [], "cells": [], "aggregator": "AVERAGE"},
            ],
204
205
        )

206
        with self.assertRaises(ValueError):
207
208
209
210
211
            table_querier(query="What does it do with empty context ?", table=None)
        with self.assertRaises(ValueError):
            table_querier(query="What does it do with empty context ?", table="")
        with self.assertRaises(ValueError):
            table_querier(query="What does it do with empty context ?", table={})
212
213
        with self.assertRaises(ValueError):
            table_querier(
214
215
216
217
218
                table={
                    "Repository": ["Transformers", "Datasets", "Tokenizers"],
                    "Stars": ["36542", "4512", "3934"],
                    "Contributors": ["651", "77", "34"],
                    "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
219
220
221
222
                }
            )
        with self.assertRaises(ValueError):
            table_querier(
223
224
225
226
227
228
229
                query="",
                table={
                    "Repository": ["Transformers", "Datasets", "Tokenizers"],
                    "Stars": ["36542", "4512", "3934"],
                    "Contributors": ["651", "77", "34"],
                    "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
                },
230
231
232
            )
        with self.assertRaises(ValueError):
            table_querier(
233
234
235
236
237
238
239
                query=None,
                table={
                    "Repository": ["Transformers", "Datasets", "Tokenizers"],
                    "Stars": ["36542", "4512", "3934"],
                    "Contributors": ["651", "77", "34"],
                    "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
                },
240
241
            )

Kamal Raj's avatar
Kamal Raj committed
242
243
    @require_torch
    def test_slow_tokenizer_sqa_pt(self):
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
        model_id = "lysandre/tiny-tapas-random-sqa"
        model = AutoModelForTableQuestionAnswering.from_pretrained(model_id)
        tokenizer = AutoTokenizer.from_pretrained(model_id)
        table_querier = TableQuestionAnsweringPipeline(model=model, tokenizer=tokenizer)

        inputs = {
            "table": {
                "actors": ["brad pitt", "leonardo di caprio", "george clooney"],
                "age": ["56", "45", "59"],
                "number of movies": ["87", "53", "69"],
                "date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"],
            },
            "query": ["how many movies has george clooney played in?", "how old is he?", "what's his date of birth?"],
        }
        sequential_outputs = table_querier(**inputs, sequential=True)
        batch_outputs = table_querier(**inputs, sequential=False)

        self.assertEqual(len(sequential_outputs), 3)
        self.assertEqual(len(batch_outputs), 3)
        self.assertEqual(sequential_outputs[0], batch_outputs[0])
        self.assertNotEqual(sequential_outputs[1], batch_outputs[1])
        # self.assertNotEqual(sequential_outputs[2], batch_outputs[2])

        table_querier = TableQuestionAnsweringPipeline(model=model, tokenizer=tokenizer)
        outputs = table_querier(
            table={
                "actors": ["brad pitt", "leonardo di caprio", "george clooney"],
                "age": ["56", "45", "59"],
                "number of movies": ["87", "53", "69"],
                "date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"],
            },
            query="how many movies has george clooney played in?",
276
        )
277
278
279
        self.assertEqual(
            outputs,
            {"answer": "7 february 1967", "coordinates": [(0, 3)], "cells": ["7 february 1967"]},
280
        )
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
        outputs = table_querier(
            table={
                "actors": ["brad pitt", "leonardo di caprio", "george clooney"],
                "age": ["56", "45", "59"],
                "number of movies": ["87", "53", "69"],
                "date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"],
            },
            query=["how many movies has george clooney played in?", "how old is he?", "what's his date of birth?"],
        )
        self.assertEqual(
            outputs,
            [
                {"answer": "7 february 1967", "coordinates": [(0, 3)], "cells": ["7 february 1967"]},
                {"answer": "7 february 1967", "coordinates": [(0, 3)], "cells": ["7 february 1967"]},
                {"answer": "7 february 1967", "coordinates": [(0, 3)], "cells": ["7 february 1967"]},
            ],
        )
        outputs = table_querier(
            table={
                "Repository": ["Transformers", "Datasets", "Tokenizers"],
                "Stars": ["36542", "4512", "3934"],
                "Contributors": ["651", "77", "34"],
                "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
            },
            query=[
                "What repository has the largest number of stars?",
Sylvain Gugger's avatar
Sylvain Gugger committed
307
308
                "Given that the numbers of stars defines if a repository is active, what repository is the most"
                " active?",
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
                "What is the number of repositories?",
                "What is the average number of stars?",
                "What is the total amount of stars?",
            ],
        )
        self.assertEqual(
            outputs,
            [
                {"answer": "Python, Python", "coordinates": [(0, 3), (1, 3)], "cells": ["Python", "Python"]},
                {"answer": "Python, Python", "coordinates": [(0, 3), (1, 3)], "cells": ["Python", "Python"]},
                {"answer": "Python, Python", "coordinates": [(0, 3), (1, 3)], "cells": ["Python", "Python"]},
                {"answer": "Python, Python", "coordinates": [(0, 3), (1, 3)], "cells": ["Python", "Python"]},
                {"answer": "Python, Python", "coordinates": [(0, 3), (1, 3)], "cells": ["Python", "Python"]},
            ],
        )

        with self.assertRaises(ValueError):
            table_querier(query="What does it do with empty context ?", table=None)
        with self.assertRaises(ValueError):
            table_querier(query="What does it do with empty context ?", table="")
        with self.assertRaises(ValueError):
            table_querier(query="What does it do with empty context ?", table={})
        with self.assertRaises(ValueError):
            table_querier(
                table={
                    "Repository": ["Transformers", "Datasets", "Tokenizers"],
                    "Stars": ["36542", "4512", "3934"],
                    "Contributors": ["651", "77", "34"],
                    "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
                }
            )
        with self.assertRaises(ValueError):
            table_querier(
                query="",
                table={
                    "Repository": ["Transformers", "Datasets", "Tokenizers"],
                    "Stars": ["36542", "4512", "3934"],
                    "Contributors": ["651", "77", "34"],
                    "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
                },
            )
        with self.assertRaises(ValueError):
            table_querier(
                query=None,
                table={
                    "Repository": ["Transformers", "Datasets", "Tokenizers"],
                    "Stars": ["36542", "4512", "3934"],
                    "Contributors": ["651", "77", "34"],
                    "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
                },
            )
360

Kamal Raj's avatar
Kamal Raj committed
361
    @require_tf
362
363
364
    @require_tensorflow_probability
    @require_pandas
    @require_torch
Kamal Raj's avatar
Kamal Raj committed
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
    def test_slow_tokenizer_sqa_tf(self):
        model_id = "lysandre/tiny-tapas-random-sqa"
        model = TFAutoModelForTableQuestionAnswering.from_pretrained(model_id, from_pt=True)
        tokenizer = AutoTokenizer.from_pretrained(model_id)
        table_querier = TableQuestionAnsweringPipeline(model=model, tokenizer=tokenizer)

        inputs = {
            "table": {
                "actors": ["brad pitt", "leonardo di caprio", "george clooney"],
                "age": ["56", "45", "59"],
                "number of movies": ["87", "53", "69"],
                "date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"],
            },
            "query": ["how many movies has george clooney played in?", "how old is he?", "what's his date of birth?"],
        }
        sequential_outputs = table_querier(**inputs, sequential=True)
        batch_outputs = table_querier(**inputs, sequential=False)

        self.assertEqual(len(sequential_outputs), 3)
        self.assertEqual(len(batch_outputs), 3)
        self.assertEqual(sequential_outputs[0], batch_outputs[0])
        self.assertNotEqual(sequential_outputs[1], batch_outputs[1])
        # self.assertNotEqual(sequential_outputs[2], batch_outputs[2])

        table_querier = TableQuestionAnsweringPipeline(model=model, tokenizer=tokenizer)
        outputs = table_querier(
            table={
                "actors": ["brad pitt", "leonardo di caprio", "george clooney"],
                "age": ["56", "45", "59"],
                "number of movies": ["87", "53", "69"],
                "date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"],
            },
            query="how many movies has george clooney played in?",
        )
        self.assertEqual(
            outputs,
            {"answer": "7 february 1967", "coordinates": [(0, 3)], "cells": ["7 february 1967"]},
        )
        outputs = table_querier(
            table={
                "actors": ["brad pitt", "leonardo di caprio", "george clooney"],
                "age": ["56", "45", "59"],
                "number of movies": ["87", "53", "69"],
                "date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"],
            },
            query=["how many movies has george clooney played in?", "how old is he?", "what's his date of birth?"],
        )
        self.assertEqual(
            outputs,
            [
                {"answer": "7 february 1967", "coordinates": [(0, 3)], "cells": ["7 february 1967"]},
                {"answer": "7 february 1967", "coordinates": [(0, 3)], "cells": ["7 february 1967"]},
                {"answer": "7 february 1967", "coordinates": [(0, 3)], "cells": ["7 february 1967"]},
            ],
        )
        outputs = table_querier(
            table={
                "Repository": ["Transformers", "Datasets", "Tokenizers"],
                "Stars": ["36542", "4512", "3934"],
                "Contributors": ["651", "77", "34"],
                "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
            },
            query=[
                "What repository has the largest number of stars?",
Sylvain Gugger's avatar
Sylvain Gugger committed
429
430
                "Given that the numbers of stars defines if a repository is active, what repository is the most"
                " active?",
Kamal Raj's avatar
Kamal Raj committed
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
                "What is the number of repositories?",
                "What is the average number of stars?",
                "What is the total amount of stars?",
            ],
        )
        self.assertEqual(
            outputs,
            [
                {"answer": "Python, Python", "coordinates": [(0, 3), (1, 3)], "cells": ["Python", "Python"]},
                {"answer": "Python, Python", "coordinates": [(0, 3), (1, 3)], "cells": ["Python", "Python"]},
                {"answer": "Python, Python", "coordinates": [(0, 3), (1, 3)], "cells": ["Python", "Python"]},
                {"answer": "Python, Python", "coordinates": [(0, 3), (1, 3)], "cells": ["Python", "Python"]},
                {"answer": "Python, Python", "coordinates": [(0, 3), (1, 3)], "cells": ["Python", "Python"]},
            ],
        )

        with self.assertRaises(ValueError):
            table_querier(query="What does it do with empty context ?", table=None)
        with self.assertRaises(ValueError):
            table_querier(query="What does it do with empty context ?", table="")
        with self.assertRaises(ValueError):
            table_querier(query="What does it do with empty context ?", table={})
        with self.assertRaises(ValueError):
            table_querier(
                table={
                    "Repository": ["Transformers", "Datasets", "Tokenizers"],
                    "Stars": ["36542", "4512", "3934"],
                    "Contributors": ["651", "77", "34"],
                    "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
                }
            )
        with self.assertRaises(ValueError):
            table_querier(
                query="",
                table={
                    "Repository": ["Transformers", "Datasets", "Tokenizers"],
                    "Stars": ["36542", "4512", "3934"],
                    "Contributors": ["651", "77", "34"],
                    "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
                },
            )
        with self.assertRaises(ValueError):
            table_querier(
                query=None,
                table={
                    "Repository": ["Transformers", "Datasets", "Tokenizers"],
                    "Stars": ["36542", "4512", "3934"],
                    "Contributors": ["651", "77", "34"],
                    "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
                },
            )

483
    @slow
Kamal Raj's avatar
Kamal Raj committed
484
    def test_integration_wtq_pt(self):
485
        table_querier = pipeline("table-question-answering")
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500

        data = {
            "Repository": ["Transformers", "Datasets", "Tokenizers"],
            "Stars": ["36542", "4512", "3934"],
            "Contributors": ["651", "77", "34"],
            "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
        }
        queries = [
            "What repository has the largest number of stars?",
            "Given that the numbers of stars defines if a repository is active, what repository is the most active?",
            "What is the number of repositories?",
            "What is the average number of stars?",
            "What is the total amount of stars?",
        ]

501
        results = table_querier(data, queries)
502
503

        expected_results = [
504
505
            {"answer": "Transformers", "coordinates": [(0, 0)], "cells": ["Transformers"], "aggregator": "NONE"},
            {"answer": "Transformers", "coordinates": [(0, 0)], "cells": ["Transformers"], "aggregator": "NONE"},
506
            {
507
                "answer": "COUNT > Transformers, Datasets, Tokenizers",
508
509
                "coordinates": [(0, 0), (1, 0), (2, 0)],
                "cells": ["Transformers", "Datasets", "Tokenizers"],
510
                "aggregator": "COUNT",
511
512
            },
            {
513
                "answer": "AVERAGE > 36542, 4512, 3934",
514
515
                "coordinates": [(0, 1), (1, 1), (2, 1)],
                "cells": ["36542", "4512", "3934"],
516
                "aggregator": "AVERAGE",
517
518
            },
            {
519
                "answer": "SUM > 36542, 4512, 3934",
520
521
                "coordinates": [(0, 1), (1, 1), (2, 1)],
                "cells": ["36542", "4512", "3934"],
522
                "aggregator": "SUM",
523
524
525
526
527
            },
        ]
        self.assertListEqual(results, expected_results)

    @slow
528
529
    @require_tensorflow_probability
    @require_pandas
Kamal Raj's avatar
Kamal Raj committed
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
    def test_integration_wtq_tf(self):
        model_id = "google/tapas-base-finetuned-wtq"
        model = TFAutoModelForTableQuestionAnswering.from_pretrained(model_id)
        tokenizer = AutoTokenizer.from_pretrained(model_id)
        table_querier = pipeline("table-question-answering", model=model, tokenizer=tokenizer)

        data = {
            "Repository": ["Transformers", "Datasets", "Tokenizers"],
            "Stars": ["36542", "4512", "3934"],
            "Contributors": ["651", "77", "34"],
            "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
        }
        queries = [
            "What repository has the largest number of stars?",
            "Given that the numbers of stars defines if a repository is active, what repository is the most active?",
            "What is the number of repositories?",
            "What is the average number of stars?",
            "What is the total amount of stars?",
        ]

        results = table_querier(data, queries)

        expected_results = [
            {"answer": "Transformers", "coordinates": [(0, 0)], "cells": ["Transformers"], "aggregator": "NONE"},
            {"answer": "Transformers", "coordinates": [(0, 0)], "cells": ["Transformers"], "aggregator": "NONE"},
            {
                "answer": "COUNT > Transformers, Datasets, Tokenizers",
                "coordinates": [(0, 0), (1, 0), (2, 0)],
                "cells": ["Transformers", "Datasets", "Tokenizers"],
                "aggregator": "COUNT",
            },
            {
                "answer": "AVERAGE > 36542, 4512, 3934",
                "coordinates": [(0, 1), (1, 1), (2, 1)],
                "cells": ["36542", "4512", "3934"],
                "aggregator": "AVERAGE",
            },
            {
                "answer": "SUM > 36542, 4512, 3934",
                "coordinates": [(0, 1), (1, 1), (2, 1)],
                "cells": ["36542", "4512", "3934"],
                "aggregator": "SUM",
            },
        ]
        self.assertListEqual(results, expected_results)

    @slow
    def test_integration_sqa_pt(self):
578
        table_querier = pipeline(
579
            "table-question-answering",
580
581
            model="google/tapas-base-finetuned-sqa",
            tokenizer="google/tapas-base-finetuned-sqa",
582
583
584
585
586
587
588
589
        )
        data = {
            "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"],
            "Age": ["56", "45", "59"],
            "Number of movies": ["87", "53", "69"],
            "Date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"],
        }
        queries = ["How many movies has George Clooney played in?", "How old is he?", "What's his date of birth?"]
590
        results = table_querier(data, queries, sequential=True)
591
592
593
594
595
596
597

        expected_results = [
            {"answer": "69", "coordinates": [(2, 2)], "cells": ["69"]},
            {"answer": "59", "coordinates": [(2, 1)], "cells": ["59"]},
            {"answer": "28 november 1967", "coordinates": [(2, 3)], "cells": ["28 november 1967"]},
        ]
        self.assertListEqual(results, expected_results)
Kamal Raj's avatar
Kamal Raj committed
598
599

    @slow
600
601
    @require_tensorflow_probability
    @require_pandas
Kamal Raj's avatar
Kamal Raj committed
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
    def test_integration_sqa_tf(self):
        model_id = "google/tapas-base-finetuned-sqa"
        model = TFAutoModelForTableQuestionAnswering.from_pretrained(model_id)
        tokenizer = AutoTokenizer.from_pretrained(model_id)
        table_querier = pipeline(
            "table-question-answering",
            model=model,
            tokenizer=tokenizer,
        )
        data = {
            "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"],
            "Age": ["56", "45", "59"],
            "Number of movies": ["87", "53", "69"],
            "Date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"],
        }
        queries = ["How many movies has George Clooney played in?", "How old is he?", "What's his date of birth?"]
        results = table_querier(data, queries, sequential=True)

        expected_results = [
            {"answer": "69", "coordinates": [(2, 2)], "cells": ["69"]},
            {"answer": "59", "coordinates": [(2, 1)], "cells": ["59"]},
            {"answer": "28 november 1967", "coordinates": [(2, 3)], "cells": ["28 november 1967"]},
        ]
        self.assertListEqual(results, expected_results)
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653

    @slow
    @require_torch
    def test_large_model_pt_tapex(self):
        model_id = "microsoft/tapex-large-finetuned-wtq"
        table_querier = pipeline(
            "table-question-answering",
            model=model_id,
        )
        data = {
            "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"],
            "Age": ["56", "45", "59"],
            "Number of movies": ["87", "53", "69"],
            "Date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"],
        }
        queries = [
            "How many movies has George Clooney played in?",
            "How old is Mr Clooney ?",
            "What's the date of birth of Leonardo ?",
        ]
        results = table_querier(data, queries, sequential=True)

        expected_results = [
            {"answer": " 69"},
            {"answer": " 59"},
            {"answer": " 10 june 1996"},
        ]
        self.assertListEqual(results, expected_results)