"docs/source/ja/model_doc/auto.md" did not exist on "a85ea4b19a47824a8e85d3304a698e2d5c8325ec"
test_deepspeed.py 8.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import json
16
import os
17
import sys
18
19
20
import unittest

from transformers.integrations import is_deepspeed_available
21
from transformers.testing_utils import (
22
    CaptureStd,
23
24
25
    TestCasePlus,
    execute_subprocess_async,
    get_gpu_count,
26
    mockenv_context,
27
28
29
30
    require_torch_gpu,
    require_torch_multi_gpu,
    slow,
)
31
32
33
from transformers.trainer_utils import set_seed


34
35
36
37
38
bindir = os.path.abspath(os.path.dirname(__file__))
sys.path.append(f"{bindir}/../../../tests")
from test_trainer import get_regression_trainer  # noqa


39
40
41
42
set_seed(42)
MBART_TINY = "sshleifer/tiny-mbart"


43
44
45
46
47
def load_json(path):
    with open(path) as f:
        return json.load(f)


48
49
50
51
52
53
54
55
56
57
58
59
# a candidate for testing_utils
def require_deepspeed(test_case):
    """
    Decorator marking a test that requires deepspeed
    """
    if not is_deepspeed_available():
        return unittest.skip("test requires deepspeed")(test_case)
    else:
        return test_case


@require_deepspeed
60
@require_torch_gpu
61
62
63
64
65
66
67
68
69
class TrainerIntegrationDeepSpeed(TestCasePlus):
    """ This class is for testing directly via get_regression_trainer """

    def setUp(self):
        super().setUp()
        self.dist_env_1_gpu = dict(
            MASTER_ADDR="localhost", MASTER_PORT="10999", RANK="0", LOCAL_RANK="0", WORLD_SIZE="1"
        )
        self.ds_config_file = f"{self.test_file_dir_str}/ds_config.json"
70
71
72

    def test_fake_notebook_no_launcher(self):

73
74
        # this setup emulates a notebook where a launcher needs to be emulated by hand

75
        with CaptureStd() as cs:
76
77
78
            with mockenv_context(**self.dist_env_1_gpu):
                trainer = get_regression_trainer(local_rank=0, deepspeed=self.ds_config_file)
                trainer.train()
79
80
        assert "DeepSpeed info" in cs.out, "expected DeepSpeed logger output but got none"

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
    def test_gradient_accumulation(self):

        # this test measures that we get identical weights and similar loss with:
        # 1. per_device_train_batch_size=8, gradient_accumulation_steps=1
        # 2. per_device_train_batch_size=4, gradient_accumulation_steps=2
        # since the 2nd should produce the effective batch of 1st, with the same results
        #
        # I can get an identical loss for a small train_len=32, plus the power of the initial
        # dynamic loss scale value set to:
        #   "fp16.initial_scale_power": 1
        # plus having the same WarmupLR's warmup_min_lr == warmup_max_lr in the config file
        # but for some reason going to train_len=64 the weights, weights start to mismatch with this setup.
        # the culprit seems to be `initial_scale_power` - putting it back to its default 32 keeps the weights identical

        train_len = 64
        a = b = 0.0

        with mockenv_context(**self.dist_env_1_gpu):
            no_grad_accum_trainer = get_regression_trainer(
                a=a,
                b=b,
                local_rank=0,
                train_len=train_len,
                deepspeed=self.ds_config_file,
                per_device_train_batch_size=8,
                gradient_accumulation_steps=1,
            )
            no_grad_accum_result = no_grad_accum_trainer.train()
            no_grad_accum_loss = no_grad_accum_result.training_loss
            no_grad_accum_a = no_grad_accum_trainer.model.a.item()
            no_grad_accum_b = no_grad_accum_trainer.model.b.item()
            # make sure the optimizer kicked in - if it hasn't changed from the original value of a then make train_len bigger
            self.assertNotEqual(no_grad_accum_a, a)

        with mockenv_context(**self.dist_env_1_gpu):
            yes_grad_accum_trainer = get_regression_trainer(
                a=a,
                b=b,
                local_rank=0,
                train_len=train_len,
                deepspeed=self.ds_config_file,
                per_device_train_batch_size=4,
                gradient_accumulation_steps=2,
            )
            yes_grad_accum_result = yes_grad_accum_trainer.train()
            yes_grad_accum_loss = yes_grad_accum_result.training_loss
            yes_grad_accum_a = yes_grad_accum_trainer.model.a.item()
            yes_grad_accum_b = yes_grad_accum_trainer.model.b.item()
            self.assertNotEqual(yes_grad_accum_a, a)

        # training with half the batch size but accumulation steps as 2 should give the same weights
        self.assertEqual(no_grad_accum_a, yes_grad_accum_a)
        self.assertEqual(no_grad_accum_b, yes_grad_accum_b)

        # see the note above how to get identical loss on a small bs
        self.assertAlmostEqual(no_grad_accum_loss, yes_grad_accum_loss, places=5)


@slow
@require_deepspeed
@require_torch_gpu
class TestDeepSpeed(TestCasePlus):
    """ This class is for testing via an external script """

145
    @require_torch_multi_gpu
146
147
    def test_basic_distributed(self):
        self.run_quick(distributed=True)
148

149
    def test_do_eval_no_train(self):
150
        # we should not fail if train is skipped
151
152
153
154
155
156
157
158
159
        output_dir = self.run_trainer(
            eval_steps=1,
            max_len=12,
            model_name=MBART_TINY,
            num_train_epochs=1,
            distributed=False,
            extra_args_str="--do_eval",
            remove_args_str="--do_train",
        )
160
161
        val_metrics = load_json(os.path.join(output_dir, "eval_results.json"))
        assert "eval_bleu" in val_metrics
162
163
164
165
166
167
168
169
170
171
172
173
174
175

    # XXX: need to do better validation beyond just that the run was successful
    def run_quick(self, distributed=True, extra_args_str=None, remove_args_str=None):
        output_dir = self.run_trainer(
            eval_steps=1,
            max_len=12,
            model_name=MBART_TINY,
            num_train_epochs=1,
            distributed=distributed,
            extra_args_str=extra_args_str,
            remove_args_str=remove_args_str,
        )
        train_metrics = load_json(os.path.join(output_dir, "train_results.json"))
        assert "train_runtime" in train_metrics
176
177
178
179
180
181
182

    def run_trainer(
        self,
        eval_steps: int,
        max_len: str,
        model_name: str,
        num_train_epochs: int,
183
        distributed: bool = True,
184
185
186
        extra_args_str: str = None,
        remove_args_str: str = None,
    ):
187
        data_dir = self.examples_dir / "test_data/wmt_en_ro"
188
189
190
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"""
            --model_name_or_path {model_name}
191
192
            --train_file {data_dir}/train.json
            --validation_file {data_dir}/val.json
193
194
            --output_dir {output_dir}
            --overwrite_output_dir
195
196
            --max_train_samples 8
            --max_val_samples 8
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
            --max_source_length {max_len}
            --max_target_length {max_len}
            --val_max_target_length {max_len}
            --do_train
            --num_train_epochs {str(num_train_epochs)}
            --per_device_train_batch_size 4
            --learning_rate 3e-3
            --warmup_steps 8
            --predict_with_generate
            --logging_steps 0
            --save_steps {str(eval_steps)}
            --group_by_length
            --label_smoothing_factor 0.1
            --adafactor
            --task translation
212
213
            --target_lang ro_RO
            --source_lang en_XX
214
215
216
217
218
219
220
221
222
223
        """.split()

        if extra_args_str is not None:
            args.extend(extra_args_str.split())

        if remove_args_str is not None:
            remove_args = remove_args_str.split()
            args = [x for x in args if x not in remove_args]

        ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config.json".split()
224
        script = [f"{self.examples_dir_str}/seq2seq/run_seq2seq.py"]
225
226
227
228
        num_gpus = get_gpu_count() if distributed else 1
        launcher = f"deepspeed --num_gpus {num_gpus}".split()

        cmd = launcher + script + args + ds_args
229
        # keep for quick debug
230
        # print(" ".join([f"PYTHONPATH={self.src_dir_str}"] +cmd)); die
231
232
233
        execute_subprocess_async(cmd, env=self.get_env())

        return output_dir