test_deepspeed.py 4.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import json
16
17
18
19
20
21
22
23
24
25
26
27
28
import os
import unittest

from transformers.integrations import is_deepspeed_available
from transformers.testing_utils import TestCasePlus, execute_subprocess_async, require_torch_multi_gpu
from transformers.trainer_callback import TrainerState
from transformers.trainer_utils import set_seed


set_seed(42)
MBART_TINY = "sshleifer/tiny-mbart"


29
30
31
32
33
def load_json(path):
    with open(path) as f:
        return json.load(f)


34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
# a candidate for testing_utils
def require_deepspeed(test_case):
    """
    Decorator marking a test that requires deepspeed
    """
    if not is_deepspeed_available():
        return unittest.skip("test requires deepspeed")(test_case)
    else:
        return test_case


@require_deepspeed
class TestDeepSpeed(TestCasePlus):

    # XXX: need to do better validation beyond just that the run was successful
    def run_quick(self, distributed=None, extra_args_str=None, remove_args_str=None):
        output_dir = self.run_trainer(1, "12", MBART_TINY, 1, distributed, extra_args_str, remove_args_str)
        logs = TrainerState.load_from_json(os.path.join(output_dir, "trainer_state.json")).log_history
        eval_metrics = [log for log in logs if "eval_loss" in log.keys()]
        first_step_stats = eval_metrics[0]
        assert "eval_bleu" in first_step_stats

    def run_quick_no_train(self, distributed=None, extra_args_str=None):
        remove_args_str = "--do_train"
        output_dir = self.run_trainer(1, "12", MBART_TINY, 1, distributed, extra_args_str, remove_args_str)
        val_metrics = load_json(os.path.join(output_dir, "val_results.json"))
        assert "val_bleu" in val_metrics
        test_metrics = load_json(os.path.join(output_dir, "test_results.json"))
        assert "test_bleu" in test_metrics

    @require_torch_multi_gpu
    def test_basic(self):
        self.run_quick()

    @require_torch_multi_gpu
    def test_grad_acum(self):
        self.run_quick(extra_args_str="--gradient_accumulation_steps 2")

    @require_torch_multi_gpu
    def test_no_train(self):
        # we should not fail if train is skipped
        self.run_quick_no_train()

    def run_trainer(
        self,
        eval_steps: int,
        max_len: str,
        model_name: str,
        num_train_epochs: int,
        distributed: bool = False,
        extra_args_str: str = None,
        remove_args_str: str = None,
    ):
        data_dir = self.examples_dir / "seq2seq/test_data/wmt_en_ro"
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"""
            --model_name_or_path {model_name}
            --data_dir {data_dir}
            --output_dir {output_dir}
            --overwrite_output_dir
            --n_train 8
            --n_val 8
            --max_source_length {max_len}
            --max_target_length {max_len}
            --val_max_target_length {max_len}
            --do_train
            --do_eval
            --do_predict
            --num_train_epochs {str(num_train_epochs)}
            --per_device_train_batch_size 4
            --per_device_eval_batch_size 4
            --learning_rate 3e-3
            --warmup_steps 8
            --evaluation_strategy steps
            --predict_with_generate
            --logging_steps 0
            --save_steps {str(eval_steps)}
            --eval_steps {str(eval_steps)}
            --group_by_length
            --label_smoothing_factor 0.1
            --adafactor
            --task translation
            --tgt_lang ro_RO
            --src_lang en_XX
        """.split()
        # --eval_beams  2

        if extra_args_str is not None:
            args.extend(extra_args_str.split())

        if remove_args_str is not None:
            remove_args = remove_args_str.split()
            args = [x for x in args if x not in remove_args]

        ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config.json".split()
        distributed_args = f"""
130
            {self.test_file_dir}/../../seq2seq/finetune_trainer.py
131
132
133
134
135
136
137
        """.split()
        cmd = ["deepspeed"] + distributed_args + args + ds_args
        # keep for quick debug
        # print(" ".join(cmd)); die
        execute_subprocess_async(cmd, env=self.get_env())

        return output_dir