check_repo.py 15.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import importlib
import inspect
import os
import re


# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_repo.py
PATH_TO_TRANSFORMERS = "src/transformers"
PATH_TO_TESTS = "tests"
PATH_TO_DOC = "docs/source/model_doc"

# Update this list for models that are not tested with a comment explaining the reason it should not be.
# Being in this list is an exception and should **not** be the rule.
IGNORE_NON_TESTED = [
    "BertLMHeadModel",  # Needs to be setup as decoder.
    "DPREncoder",  # Building part of bigger (tested) model.
    "DPRSpanPredictor",  # Building part of bigger (tested) model.
    "ReformerForMaskedLM",  # Needs to be setup as decoder.
    "T5Stack",  # Building part of bigger (tested) model.
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
36
37
    "TFDPREncoder",  # Building part of bigger (tested) model.
    "TFDPRSpanPredictor",  # Building part of bigger (tested) model.
38
39
40
41
42
43
44
45
    "TFElectraMainLayer",  # Building part of bigger (tested) model (should it be a TFPreTrainedModel ?)
    "TFRobertaForMultipleChoice",  # TODO: fix
]

# Update this list with test files that don't have a tester with a `all_model_classes` variable and which don't
# trigger the common tests.
TEST_FILES_WITH_NO_COMMON_TESTS = [
    "test_modeling_camembert.py",
Stas Bekman's avatar
Stas Bekman committed
46
47
48
49
    "test_modeling_flax_bert.py",
    "test_modeling_flax_roberta.py",
    "test_modeling_mbart.py",
    "test_modeling_pegasus.py",
50
51
    "test_modeling_tf_camembert.py",
    "test_modeling_tf_xlm_roberta.py",
Weizhen's avatar
Weizhen committed
52
    "test_modeling_xlm_prophetnet.py",
53
54
55
56
57
58
59
60
61
    "test_modeling_xlm_roberta.py",
]

# Update this list for models that are not documented with a comment explaining the reason it should not be.
# Being in this list is an exception and should **not** be the rule.
IGNORE_NON_DOCUMENTED = [
    "DPREncoder",  # Building part of bigger (documented) model.
    "DPRSpanPredictor",  # Building part of bigger (documented) model.
    "T5Stack",  # Building part of bigger (tested) model.
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
62
63
    "TFDPREncoder",  # Building part of bigger (documented) model.
    "TFDPRSpanPredictor",  # Building part of bigger (documented) model.
64
65
66
67
68
69
70
    "TFElectraMainLayer",  # Building part of bigger (documented) model (should it be a TFPreTrainedModel ?)
]

# Update this dict with any special correspondance model name (used in modeling_xxx.py) to doc file.
MODEL_NAME_TO_DOC_FILE = {
    "openai": "gpt.rst",
    "transfo_xl": "transformerxl.rst",
Weizhen's avatar
Weizhen committed
71
    "xlm_prophetnet": "xlmprophetnet.rst",
72
    "xlm_roberta": "xlmroberta.rst",
73
    "bert_generation": "bertgeneration.rst",
74
    "marian": "marian.rst",
75
76
}

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# Update this list for models that are not in any of the auto MODEL_XXX_MAPPING. Being in this list is an exception and
# should **not** be the rule.
IGNORE_NON_AUTO_CONFIGURED = [
    "DPRContextEncoder",
    "DPREncoder",
    "DPRReader",
    "DPRSpanPredictor",
    "FlaubertForQuestionAnswering",
    "FunnelBaseModel",
    "GPT2DoubleHeadsModel",
    "OpenAIGPTDoubleHeadsModel",
    "ProphetNetDecoder",
    "ProphetNetEncoder",
    "RagModel",
    "RagSequenceForGeneration",
    "RagTokenForGeneration",
    "T5Stack",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
94
95
96
97
    "TFDPRContextEncoder",
    "TFDPREncoder",
    "TFDPRReader",
    "TFDPRSpanPredictor",
98
99
100
101
102
103
104
105
106
    "TFFunnelBaseModel",
    "TFGPT2DoubleHeadsModel",
    "TFOpenAIGPTDoubleHeadsModel",
    "XLMForQuestionAnswering",
    "XLMProphetNetDecoder",
    "XLMProphetNetEncoder",
    "XLNetForQuestionAnswering",
]

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
# This is to make sure the transformers module imported is the one in the repo.
spec = importlib.util.spec_from_file_location(
    "transformers",
    os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"),
    submodule_search_locations=[PATH_TO_TRANSFORMERS],
)
transformers = spec.loader.load_module()


# If some modeling modules should be ignored for all checks, they should be added in the nested list
# _ignore_modules of this function.
def get_model_modules():
    """ Get the model modules inside the transformers library. """
    _ignore_modules = [
        "modeling_auto",
        "modeling_encoder_decoder",
        "modeling_marian",
        "modeling_mmbt",
        "modeling_outputs",
        "modeling_retribert",
        "modeling_utils",
Stas Bekman's avatar
Stas Bekman committed
128
        "modeling_flax_utils",
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
        "modeling_transfo_xl_utilities",
        "modeling_tf_auto",
        "modeling_tf_outputs",
        "modeling_tf_pytorch_utils",
        "modeling_tf_utils",
        "modeling_tf_transfo_xl_utilities",
    ]
    modules = []
    for attr_name in dir(transformers):
        if attr_name.startswith("modeling") and attr_name not in _ignore_modules:
            module = getattr(transformers, attr_name)
            if inspect.ismodule(module):
                modules.append(module)
    return modules


def get_models(module):
    """ Get the objects in module that are models."""
    models = []
    model_classes = (transformers.PreTrainedModel, transformers.TFPreTrainedModel)
    for attr_name in dir(module):
        if "Pretrained" in attr_name or "PreTrained" in attr_name:
            continue
        attr = getattr(module, attr_name)
        if isinstance(attr, type) and issubclass(attr, model_classes) and attr.__module__ == module.__name__:
            models.append((attr_name, attr))
    return models


# If some test_modeling files should be ignored when checking models are all tested, they should be added in the
# nested list _ignore_files of this function.
def get_model_test_files():
    """ Get the model test files."""
    _ignore_files = [
        "test_modeling_common",
        "test_modeling_encoder_decoder",
        "test_modeling_marian",
        "test_modeling_tf_common",
    ]
    test_files = []
    for filename in os.listdir(PATH_TO_TESTS):
        if (
            os.path.isfile(f"{PATH_TO_TESTS}/{filename}")
            and filename.startswith("test_modeling")
            and not os.path.splitext(filename)[0] in _ignore_files
        ):
            test_files.append(filename)
    return test_files


# If some doc source files should be ignored when checking models are all documented, they should be added in the
# nested list _ignore_modules of this function.
def get_model_doc_files():
    """ Get the model doc files."""
    _ignore_modules = [
        "auto",
        "dialogpt",
        "retribert",
    ]
    doc_files = []
    for filename in os.listdir(PATH_TO_DOC):
        if os.path.isfile(f"{PATH_TO_DOC}/{filename}") and not os.path.splitext(filename)[0] in _ignore_modules:
            doc_files.append(filename)
    return doc_files


# This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the tester class
# for the all_model_classes variable.
def find_tested_models(test_file):
    """ Parse the content of test_file to detect what's in all_model_classes"""
Sylvain Gugger's avatar
Sylvain Gugger committed
199
    # This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the class
200
    with open(os.path.join(PATH_TO_TESTS, test_file), "r", encoding="utf-8", newline="\n") as f:
201
        content = f.read()
Sylvain Gugger's avatar
Sylvain Gugger committed
202
    all_models = re.findall(r"all_model_classes\s+=\s+\(\s*\(([^\)]*)\)", content)
203
    # Check with one less parenthesis
Sylvain Gugger's avatar
Sylvain Gugger committed
204
205
206
    if len(all_models) == 0:
        all_models = re.findall(r"all_model_classes\s+=\s+\(([^\)]*)\)", content)
    if len(all_models) > 0:
207
        model_tested = []
Sylvain Gugger's avatar
Sylvain Gugger committed
208
209
210
211
212
        for entry in all_models:
            for line in entry.split(","):
                name = line.strip()
                if len(name) > 0:
                    model_tested.append(name)
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
        return model_tested


def check_models_are_tested(module, test_file):
    """ Check models defined in module are tested in test_file."""
    defined_models = get_models(module)
    tested_models = find_tested_models(test_file)
    if tested_models is None:
        if test_file in TEST_FILES_WITH_NO_COMMON_TESTS:
            return
        return [
            f"{test_file} should define `all_model_classes` to apply common tests to the models it tests. "
            + "If this intentional, add the test filename to `TEST_FILES_WITH_NO_COMMON_TESTS` in the file "
            + "`utils/check_repo.py`."
        ]
    failures = []
    for model_name, _ in defined_models:
        if model_name not in tested_models and model_name not in IGNORE_NON_TESTED:
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not tested in "
                + f"{os.path.join(PATH_TO_TESTS, test_file)}. Add it to the all_model_classes in that file."
                + "If common tests should not applied to that model, add its name to `IGNORE_NON_TESTED`"
                + "in the file `utils/check_repo.py`."
            )
    return failures


def check_all_models_are_tested():
    """ Check all models are properly tested."""
    modules = get_model_modules()
    test_files = get_model_test_files()
    failures = []
    for module in modules:
        test_file = f"test_{module.__name__.split('.')[1]}.py"
        if test_file not in test_files:
            failures.append(f"{module.__name__} does not have its corresponding test file {test_file}.")
        new_failures = check_models_are_tested(module, test_file)
        if new_failures is not None:
            failures += new_failures
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


def find_documented_classes(doc_file):
    """ Parse the content of doc_file to detect which classes it documents"""
258
    with open(os.path.join(PATH_TO_DOC, doc_file), "r", encoding="utf-8", newline="\n") as f:
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
        content = f.read()
    return re.findall(r"autoclass:: transformers.(\S+)\s+", content)


def check_models_are_documented(module, doc_file):
    """ Check models defined in module are documented in doc_file."""
    defined_models = get_models(module)
    documented_classes = find_documented_classes(doc_file)
    failures = []
    for model_name, _ in defined_models:
        if model_name not in documented_classes and model_name not in IGNORE_NON_DOCUMENTED:
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not documented in "
                + f"{os.path.join(PATH_TO_DOC, doc_file)}. Add it to that file."
                + "If this model should not be documented, add its name to `IGNORE_NON_DOCUMENTED`"
                + "in the file `utils/check_repo.py`."
            )
    return failures


def _get_model_name(module):
    """ Get the model name for the module defining it."""
    splits = module.__name__.split("_")
282
    splits = splits[(2 if splits[1] in ["flax", "tf"] else 1) :]
283

284
    return "_".join(splits)
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307


def check_all_models_are_documented():
    """ Check all models are properly documented."""
    modules = get_model_modules()
    doc_files = get_model_doc_files()
    failures = []
    for module in modules:
        model_name = _get_model_name(module)
        doc_file = MODEL_NAME_TO_DOC_FILE.get(model_name, f"{model_name}.rst")
        if doc_file not in doc_files:
            failures.append(
                f"{module.__name__} does not have its corresponding doc file {doc_file}. "
                + f"If the doc file exists but isn't named {doc_file}, update `MODEL_NAME_TO_DOC_FILE` "
                + "in the file `utils/check_repo.py`."
            )
        new_failures = check_models_are_documented(module, doc_file)
        if new_failures is not None:
            failures += new_failures
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
def get_all_auto_configured_models():
    """ Return the list of all models in at least one auto class."""
    result = set()  # To avoid duplicates we concatenate all model classes in a set.
    for attr_name in dir(transformers.modeling_auto):
        if attr_name.startswith("MODEL_") and attr_name.endswith("MAPPING"):
            result = result | set(getattr(transformers.modeling_auto, attr_name).values())
    for attr_name in dir(transformers.modeling_tf_auto):
        if attr_name.startswith("TF_MODEL_") and attr_name.endswith("MAPPING"):
            result = result | set(getattr(transformers.modeling_tf_auto, attr_name).values())
    return [cls.__name__ for cls in result]


def check_models_are_auto_configured(module, all_auto_models):
    """ Check models defined in module are each in an auto class."""
    defined_models = get_models(module)
    failures = []
    for model_name, _ in defined_models:
        if model_name not in all_auto_models and model_name not in IGNORE_NON_AUTO_CONFIGURED:
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not present in any of the auto mapping. "
                "If that is intended behavior, add its name to `IGNORE_NON_AUTO_CONFIGURED` in the file "
                "`utils/check_repo.py`."
            )
    return failures


def check_all_models_are_auto_configured():
    """ Check all models are each in an auto class."""
    modules = get_model_modules()
    all_auto_models = get_all_auto_configured_models()
    failures = []
    for module in modules:
        new_failures = check_models_are_auto_configured(module, all_auto_models)
        if new_failures is not None:
            failures += new_failures
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


Sylvain Gugger's avatar
Sylvain Gugger committed
347
348
349
350
351
_re_decorator = re.compile(r"^\s*@(\S+)\s+$")


def check_decorator_order(filename):
    """ Check that in the test file `filename` the slow decorator is always last."""
352
    with open(filename, "r", encoding="utf-8", newline="\n") as f:
Sylvain Gugger's avatar
Sylvain Gugger committed
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
        lines = f.readlines()
    decorator_before = None
    errors = []
    for i, line in enumerate(lines):
        search = _re_decorator.search(line)
        if search is not None:
            decorator_name = search.groups()[0]
            if decorator_before is not None and decorator_name.startswith("parameterized"):
                errors.append(i)
            decorator_before = decorator_name
        elif decorator_before is not None:
            decorator_before = None
    return errors


def check_all_decorator_order():
    """ Check that in all test files, the slow decorator is always last."""
    errors = []
    for fname in os.listdir(PATH_TO_TESTS):
        if fname.endswith(".py"):
            filename = os.path.join(PATH_TO_TESTS, fname)
            new_errors = check_decorator_order(filename)
            errors += [f"- {filename}, line {i}" for i in new_errors]
    if len(errors) > 0:
        msg = "\n".join(errors)
        raise ValueError(
            f"The parameterized decorator (and its variants) should always be first, but this is not the case in the following files:\n{msg}"
        )


383
384
385
def check_repo_quality():
    """ Check all models are properly tested and documented."""
    print("Checking all models are properly tested.")
Sylvain Gugger's avatar
Sylvain Gugger committed
386
    check_all_decorator_order()
387
    check_all_models_are_tested()
Sylvain Gugger's avatar
Sylvain Gugger committed
388
389
    print("Checking all models are properly documented.")
    check_all_models_are_documented()
390
391
    print("Checking all models are in at least one auto class.")
    check_all_models_are_auto_configured()
392
393
394
395


if __name__ == "__main__":
    check_repo_quality()