tokenization_xlm.py 16.7 KB
Newer Older
thomwolf's avatar
xlm  
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# coding=utf-8
# Copyright 2019 The Open AI Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for OpenAI GPT."""
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import json
import logging
import os
import re
23
import unicodedata
thomwolf's avatar
xlm  
thomwolf committed
24
25
from io import open

Shijie Wu's avatar
Shijie Wu committed
26
27
import jieba
import Mykytea
28
import sacremoses as sm
Shijie Wu's avatar
Shijie Wu committed
29
30
from nltk.tokenize.stanford_segmenter import StanfordSegmenter
from pythainlp.tokenize import word_tokenize as th_word_tokenize
31

32
from .tokenization_utils import PreTrainedTokenizer
thomwolf's avatar
thomwolf committed
33
from .tokenization_bert import BasicTokenizer
thomwolf's avatar
xlm  
thomwolf committed
34
35
36

logger = logging.getLogger(__name__)

37
38
39
VOCAB_FILES_NAMES = {
    'vocab_file': 'vocab.json',
    'merges_file': 'merges.txt',
thomwolf's avatar
xlm  
thomwolf committed
40
}
41
42
43
44
45

PRETRAINED_VOCAB_FILES_MAP = {
    'vocab_file':
    {
        'xlm-mlm-en-2048': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-en-2048-vocab.json",
46
47
48
49
50
51
52
        'xlm-mlm-ende-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-ende-1024-vocab.json",
        'xlm-mlm-enfr-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enfr-1024-vocab.json",
        'xlm-mlm-enro-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enro-1024-vocab.json",
        'xlm-mlm-tlm-xnli15-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-tlm-xnli15-1024-vocab.json",
        'xlm-mlm-xnli15-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-xnli15-1024-vocab.json",
        'xlm-clm-enfr-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-clm-enfr-1024-vocab.json",
        'xlm-clm-ende-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-clm-ende-1024-vocab.json",
53
54
55
56
    },
    'merges_file':
    {
        'xlm-mlm-en-2048': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-en-2048-merges.txt",
57
58
59
60
61
62
63
        'xlm-mlm-ende-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-ende-1024-merges.txt",
        'xlm-mlm-enfr-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enfr-1024-merges.txt",
        'xlm-mlm-enro-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enro-1024-merges.txt",
        'xlm-mlm-tlm-xnli15-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-tlm-xnli15-1024-merges.txt",
        'xlm-mlm-xnli15-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-xnli15-1024-merges.txt",
        'xlm-clm-enfr-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enfr-1024-merges.txt",
        'xlm-clm-ende-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-ende-1024-merges.txt",
64
    },
thomwolf's avatar
xlm  
thomwolf committed
65
}
66
67

PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
thomwolf's avatar
xlm  
thomwolf committed
68
    'xlm-mlm-en-2048': 512,
69
70
71
72
73
74
75
    'xlm-mlm-ende-1024': 512,
    'xlm-mlm-enfr-1024': 512,
    'xlm-mlm-enro-1024': 512,
    'xlm-mlm-tlm-xnli15-1024': 512,
    'xlm-mlm-xnli15-1024': 512,
    'xlm-clm-enfr-1024': 512,
    'xlm-clm-ende-1024': 512,
thomwolf's avatar
xlm  
thomwolf committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
}

def get_pairs(word):
    """
    Return set of symbol pairs in a word.
    word is represented as tuple of symbols (symbols being variable-length strings)
    """
    pairs = set()
    prev_char = word[0]
    for char in word[1:]:
        pairs.add((prev_char, char))
        prev_char = char
    return pairs

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

def lowercase_and_remove_accent(text):
    """
    Lowercase and strips accents from a piece of text based on
    https://github.com/facebookresearch/XLM/blob/master/tools/lowercase_and_remove_accent.py
    """
    text = text.lower()
    text = unicodedata.normalize("NFD", text)
    output = []
    for char in text:
        cat = unicodedata.category(char)
        if cat == "Mn":
            continue
        output.append(char)
    return "".join(output).lower()


def replace_unicode_punct(text):
    '''
    Port of https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/replace-unicode-punctuation.perl
    '''
    text = text.replace(',', ',')
Shijie Wu's avatar
Shijie Wu committed
112
    text = re.sub(r'。\s*', '. ', text)
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
    text = text.replace('、', ',')
    text = text.replace('”', '"')
    text = text.replace('“', '"')
    text = text.replace('∶', ':')
    text = text.replace(':', ':')
    text = text.replace('?', '?')
    text = text.replace('《', '"')
    text = text.replace('》', '"')
    text = text.replace(')', ')')
    text = text.replace('!', '!')
    text = text.replace('(', '(')
    text = text.replace(';', ';')
    text = text.replace('1', '"')
    text = text.replace('」', '"')
    text = text.replace('「', '"')
    text = text.replace('0', '0')
    text = text.replace('3', '3')
    text = text.replace('2', '2')
    text = text.replace('5', '5')
    text = text.replace('6', '6')
    text = text.replace('9', '9')
    text = text.replace('7', '7')
    text = text.replace('8', '8')
    text = text.replace('4', '4')
    text = re.sub(r'.\s*', '. ', text)
    text = text.replace('~', '~')
    text = text.replace('’', '\'')
    text = text.replace('…', '...')
    text = text.replace('━', '-')
    text = text.replace('〈', '<')
    text = text.replace('〉', '>')
    text = text.replace('【', '[')
    text = text.replace('】', ']')
    text = text.replace('%', '%')
    return text


def remove_non_printing_char(text):
    '''
    Port of https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/remove-non-printing-char.perl
    '''
    output = []
    for char in text:
        cat = unicodedata.category(char)
        if cat.startswith('C'):
            continue
        output.append(char)
    return "".join(output)


def romanian_preprocessing(text):
    '''Sennrich's WMT16 scripts for Romanian preprocessing, used by model `xlm-mlm-enro-1024`'''
    # https://github.com/rsennrich/wmt16-scripts/blob/master/preprocess/normalise-romanian.py
    text = text.replace("\u015e", "\u0218").replace("\u015f", "\u0219")
    text = text.replace("\u0162", "\u021a").replace("\u0163", "\u021b")
    # https://github.com/rsennrich/wmt16-scripts/blob/master/preprocess/remove-diacritics.py
    text = text.replace("\u0218", "S").replace("\u0219", "s") #s-comma
    text = text.replace("\u021a", "T").replace("\u021b", "t") #t-comma
    text = text.replace("\u0102", "A").replace("\u0103", "a")
    text = text.replace("\u00C2", "A").replace("\u00E2", "a")
    text = text.replace("\u00CE", "I").replace("\u00EE", "i")
    return text


177
class XLMTokenizer(PreTrainedTokenizer):
thomwolf's avatar
xlm  
thomwolf committed
178
179
    """
    BPE tokenizer for XLM, adapted from OpenAI BPE tokenizer. Peculiarities:
180

thomwolf's avatar
xlm  
thomwolf committed
181
        - lower case all inputs
182
183
184
185
186
187
188

        - uses `SpaCy tokenizer <https://spacy.io/api/tokenizer/>`_ and \
        `ftfy <https://ftfy.readthedocs.io/en/latest/>`_ for pre-BPE tokenization if they are installed, \
        fallback to BERT's BasicTokenizer if not.

        - argument ``special_tokens`` and function ``set_special_tokens``, can be used to add additional symbols \
        (ex: "__classify__") to a vocabulary.
thomwolf's avatar
xlm  
thomwolf committed
189
    """
190
191
192
    vocab_files_names = VOCAB_FILES_NAMES
    pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
    max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
thomwolf's avatar
xlm  
thomwolf committed
193

194
195
196
197
198
199
200
201
202
203
    def __init__(self, vocab_file, merges_file, unk_token="<unk>", bos_token="<s>",
                 sep_token="</s>", pad_token="<pad>", cls_token="</s>",
                 mask_token="<special1>", additional_special_tokens=["<special0>",
                 "<special1>", "<special2>", "<special3>", "<special4>", "<special5>",
                 "<special6>", "<special7>", "<special8>", "<special9>"], **kwargs):
        super(XLMTokenizer, self).__init__(unk_token=unk_token, bos_token=bos_token,
                                           sep_token=sep_token, pad_token=pad_token,
                                           cls_token=cls_token, mask_token=mask_token,
                                           additional_special_tokens=additional_special_tokens,
                                           **kwargs)
204
205
206
207
208
209
210
211

        # cache of sm.MosesPunctNormalizer instance
        self.cache_moses_punct_normalizer = dict()
        # cache of sm.MosesTokenizer instance
        self.cache_moses_tokenizer = dict()
        self.lang_with_custom_tokenizer = set(['zh', 'th', 'ja'])
        # True for current supported model (v1.2.0), False for XLM-17 & 100
        self.do_lowercase_and_remove_accent = True
Shijie Wu's avatar
Shijie Wu committed
212
213
        self.ja_word_tokenizer = None
        self.zh_word_tokenizer = None
thomwolf's avatar
xlm  
thomwolf committed
214
215
216
217
218
219
220

        self.encoder = json.load(open(vocab_file, encoding="utf-8"))
        self.decoder = {v:k for k,v in self.encoder.items()}
        merges = open(merges_file, encoding='utf-8').read().split('\n')[:-1]
        merges = [tuple(merge.split()[:2]) for merge in merges]
        self.bpe_ranks = dict(zip(merges, range(len(merges))))
        self.cache = {}
221

222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
    def moses_punct_norm(self, text, lang):
        if lang not in self.cache_moses_punct_normalizer:
            punct_normalizer = sm.MosesPunctNormalizer(lang=lang)
            self.cache_moses_punct_normalizer[lang] = punct_normalizer
        else:
            punct_normalizer = self.cache_moses_punct_normalizer[lang]
        return punct_normalizer.normalize(text)

    def moses_tokenize(self, text, lang):
        if lang not in self.cache_moses_tokenizer:
            moses_tokenizer = sm.MosesTokenizer(lang=lang)
            self.cache_moses_tokenizer[lang] = moses_tokenizer
        else:
            moses_tokenizer = self.cache_moses_tokenizer[lang]
        return moses_tokenizer.tokenize(text, return_str=False, escape=False)

    def moses_pipeline(self, text, lang):
        text = replace_unicode_punct(text)
        text = self.moses_punct_norm(text, lang)
        text = remove_non_printing_char(text)
        return text

Shijie Wu's avatar
Shijie Wu committed
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
    def ja_tokenize(self, text):
        if self.ja_word_tokenizer is None:
            try:
                self.ja_word_tokenizer = Mykytea.Mykytea('-model %s/local/share/kytea/model.bin' % os.path.expanduser('~'))
            except RuntimeError:
                logger.error("Make sure you install KyTea (https://github.com/neubig/kytea) with the following steps")
                logger.error("1. git clone git@github.com:neubig/kytea.git && cd kytea")
                logger.error("2. autoreconf -i")
                logger.error("3. ./configure --prefix=$HOME/local")
                logger.error("4. make && make install")
                import sys; sys.exit()
        return list(self.ja_word_tokenizer.getWS(text))

    def zh_tokenize(self, text):
        if self.zh_word_tokenizer is None:
            try:
                self.zh_word_tokenizer = StanfordSegmenter()
                self.zh_word_tokenizer.default_config('zh')
            except LookupError:
                logger.error("Make sure you download stanford-segmenter (https://nlp.stanford.edu/software/stanford-segmenter-2018-10-16.zip) with the following steps")
                logger.error("1. wget https://nlp.stanford.edu/software/stanford-segmenter-2018-10-16.zip -O /path/to/stanford-segmenter-2018-10-16.zip")
                logger.error("2. cd /path/to && unzip stanford-segmenter-2018-10-16.zip")
                logger.error("3. cd stanford-segmenter-2018-10-16 && cp stanford-segmenter-3.9.2.jar stanford-segmenter.jar")
                logger.error("4. set env variable STANFORD_SEGMENTER=/path/to/stanford-segmenter-2018-10-16")
                import sys; sys.exit()
        return self.zh_word_tokenizer.segment(text)

271
272
273
    @property
    def vocab_size(self):
        return len(self.encoder)
thomwolf's avatar
xlm  
thomwolf committed
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317

    def bpe(self, token):
        word = tuple(token[:-1]) + (token[-1] + '</w>',)
        if token in self.cache:
            return self.cache[token]
        pairs = get_pairs(word)

        if not pairs:
            return token+'</w>'

        while True:
            bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float('inf')))
            if bigram not in self.bpe_ranks:
                break
            first, second = bigram
            new_word = []
            i = 0
            while i < len(word):
                try:
                    j = word.index(first, i)
                    new_word.extend(word[i:j])
                    i = j
                except:
                    new_word.extend(word[i:])
                    break

                if word[i] == first and i < len(word)-1 and word[i+1] == second:
                    new_word.append(first+second)
                    i += 2
                else:
                    new_word.append(word[i])
                    i += 1
            new_word = tuple(new_word)
            word = new_word
            if len(word) == 1:
                break
            else:
                pairs = get_pairs(word)
        word = ' '.join(word)
        if word == '\n  </w>':
            word = '\n</w>'
        self.cache[token] = word
        return word

318
    def _tokenize(self, text, lang='en'):
thomwolf's avatar
xlm  
thomwolf committed
319
        """ Tokenize a string. """
320
321
322
323
324
325
326
327
        if self.do_lowercase_and_remove_accent:
            text = lowercase_and_remove_accent(text)
        if lang not in self.lang_with_custom_tokenizer:
            text = self.moses_pipeline(text, lang=lang)
            # TODO: make sure we are using `xlm-mlm-enro-1024`, since XLM-100 doesn't have this step
            if lang == 'ro':
                text = romanian_preprocessing(text)
            text = self.moses_tokenize(text, lang=lang)
Shijie Wu's avatar
Shijie Wu committed
328
329
330
331
332
333
334
335
336
337
338
        elif lang == 'th':
            text = self.moses_pipeline(text, lang=lang)
            text = th_word_tokenize(text)
        elif lang == 'zh':
            # text = self.zh_tokenize(text)
            text = ' '.join(jieba.cut(text))
            text = self.moses_pipeline(text, lang=lang)
            text = text.split()
        elif lang == 'ja':
            text = self.moses_pipeline(text, lang=lang)
            text = self.ja_tokenize(text)
thomwolf's avatar
xlm  
thomwolf committed
339
        else:
Shijie Wu's avatar
Shijie Wu committed
340
341
342
343
344
345
            raise ValueError('It should not reach here')

        split_tokens = []
        for token in text:
            split_tokens.extend([t for t in self.bpe(token).split(' ')])

thomwolf's avatar
xlm  
thomwolf committed
346
347
        return split_tokens

348
349
350
    def _convert_token_to_id(self, token):
        """ Converts a token (str/unicode) in an id using the vocab. """
        return self.encoder.get(token, self.encoder.get(self.unk_token))
thomwolf's avatar
xlm  
thomwolf committed
351

352
353
354
    def _convert_id_to_token(self, index):
        """Converts an index (integer) in a token (string/unicode) using the vocab."""
        return self.decoder.get(index, self.unk_token)
thomwolf's avatar
xlm  
thomwolf committed
355

356
357
358
    def convert_tokens_to_string(self, tokens):
        """ Converts a sequence of tokens (string) in a single string. """
        out_string = ''.join(tokens).replace('</w>', ' ').strip()
thomwolf's avatar
xlm  
thomwolf committed
359
360
        return out_string

361
    def add_special_tokens_single_sentence(self, token_ids):
362
363
364
365
        """
        Adds special tokens to a sequence for sequence classification tasks.
        An XLM sequence has the following format: [CLS] X [SEP]
        """
366
367
        return [self._convert_token_to_id(self.cls_token)] + token_ids + [self._convert_token_to_id(self.sep_token)]

368
369
370
371
372
    def add_special_tokens_sentences_pair(self, token_ids_0, token_ids_1):
        """
        Adds special tokens to a sequence pair for sequence classification tasks.
        An XLM sequence pair has the following format: [CLS] A [SEP] B [SEP]
        """
373
374
        sep = [self._convert_token_to_id(self.sep_token)]
        cls = [self._convert_token_to_id(self.cls_token)]
375
        return cls + token_ids_0 + sep + token_ids_1 + sep
376

377
    def save_vocabulary(self, save_directory):
thomwolf's avatar
xlm  
thomwolf committed
378
        """Save the tokenizer vocabulary and merge files to a directory."""
379
380
        if not os.path.isdir(save_directory):
            logger.error("Vocabulary path ({}) should be a directory".format(save_directory))
thomwolf's avatar
xlm  
thomwolf committed
381
            return
382
383
        vocab_file = os.path.join(save_directory, VOCAB_FILES_NAMES['vocab_file'])
        merge_file = os.path.join(save_directory, VOCAB_FILES_NAMES['merges_file'])
thomwolf's avatar
xlm  
thomwolf committed
384
385
386
387
388
389
390
391
392
393
394
395
396
397

        with open(vocab_file, 'w', encoding='utf-8') as f:
            f.write(json.dumps(self.encoder, ensure_ascii=False))

        index = 0
        with open(merge_file, "w", encoding="utf-8") as writer:
            for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
                if index != token_index:
                    logger.warning("Saving vocabulary to {}: BPE merge indices are not consecutive."
                                   " Please check that the tokenizer is not corrupted!".format(merge_file))
                    index = token_index
                writer.write(' '.join(bpe_tokens) + u'\n')
                index += 1

398
        return vocab_file, merge_file