test_trainer_utils.py 13.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# coding=utf-8
# Copyright 2018 the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import numpy as np

from transformers.file_utils import is_torch_available
from transformers.testing_utils import require_torch


if is_torch_available():
Sylvain Gugger's avatar
Sylvain Gugger committed
25
    import torch
26
    from torch.utils.data import IterableDataset
Sylvain Gugger's avatar
Sylvain Gugger committed
27
28

    from transformers.modeling_outputs import SequenceClassifierOutput
29
30
    from transformers.trainer_pt_utils import (
        DistributedLengthGroupedSampler,
31
        DistributedSamplerWithLoop,
32
        DistributedTensorGatherer,
33
        IterableDatasetShard,
34
35
        LabelSmoother,
        LengthGroupedSampler,
36
        SequentialDistributedSampler,
37
        get_parameter_names,
38
    )
39

40
41
42
43
44
45
46
47
48
49
50
51
52
53
    class TstLayer(torch.nn.Module):
        def __init__(self, hidden_size):
            super().__init__()
            self.linear1 = torch.nn.Linear(hidden_size, hidden_size)
            self.ln1 = torch.nn.LayerNorm(hidden_size)
            self.linear2 = torch.nn.Linear(hidden_size, hidden_size)
            self.ln2 = torch.nn.LayerNorm(hidden_size)
            self.bias = torch.nn.Parameter(torch.zeros(hidden_size))

        def forward(self, x):
            h = self.ln1(torch.nn.functional.relu(self.linear1(x)))
            h = torch.nn.functional.relu(self.linear2(x))
            return self.ln2(x + h + self.bias)

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
    class RandomIterableDataset(IterableDataset):
        # For testing, an iterable dataset of random length
        def __init__(self, p_stop=0.01, max_length=1000):
            self.p_stop = p_stop
            self.max_length = max_length
            self.generator = torch.Generator()

        def __iter__(self):
            count = 0
            stop = False
            while not stop and count < self.max_length:
                yield count
                count += 1
                number = torch.rand(1, generator=self.generator).item()
                stop = number < self.p_stop

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

@require_torch
class TrainerUtilsTest(unittest.TestCase):
    def test_distributed_tensor_gatherer(self):
        # Simulate a result with a dataset of size 21, 4 processes and chunks of lengths 2, 3, 1
        world_size = 4
        num_samples = 21
        input_indices = [
            [0, 1, 6, 7, 12, 13, 18, 19],
            [2, 3, 4, 8, 9, 10, 14, 15, 16, 20, 0, 1],
            [5, 11, 17, 2],
        ]

        predictions = np.random.normal(size=(num_samples, 13))
        gatherer = DistributedTensorGatherer(world_size=world_size, num_samples=num_samples)
        for indices in input_indices:
            gatherer.add_arrays(predictions[indices])
        result = gatherer.finalize()
        self.assertTrue(np.array_equal(result, predictions))

        # With nested tensors
        gatherer = DistributedTensorGatherer(world_size=world_size, num_samples=num_samples)
        for indices in input_indices:
            gatherer.add_arrays([predictions[indices], [predictions[indices], predictions[indices]]])
        result = gatherer.finalize()
        self.assertTrue(isinstance(result, list))
        self.assertTrue(len(result), 2)
        self.assertTrue(isinstance(result[1], list))
        self.assertTrue(len(result[1]), 2)
        self.assertTrue(np.array_equal(result[0], predictions))
        self.assertTrue(np.array_equal(result[1][0], predictions))
        self.assertTrue(np.array_equal(result[1][1], predictions))
Sylvain Gugger's avatar
Sylvain Gugger committed
102

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
    def test_distributed_tensor_gatherer_different_shapes(self):
        # Simulate a result with a dataset of size 21, 4 processes and chunks of lengths 2, 3, 1
        world_size = 4
        num_samples = 21
        input_indices = [
            [0, 1, 6, 7, 12, 13, 18, 19],
            [2, 3, 4, 8, 9, 10, 14, 15, 16, 20, 0, 1],
            [5, 11, 17, 2],
        ]
        sequence_lengths = [8, 10, 13]

        predictions = np.random.normal(size=(num_samples, 13))
        gatherer = DistributedTensorGatherer(world_size=world_size, num_samples=num_samples)
        for indices, seq_length in zip(input_indices, sequence_lengths):
            gatherer.add_arrays(predictions[indices, :seq_length])
        result = gatherer.finalize()

        # Remove the extra samples added at the end for a round multiple of num processes.
        actual_indices = [input_indices[0], input_indices[1][:-2], input_indices[2][:-1]]
        for indices, seq_length in zip(actual_indices, sequence_lengths):
            self.assertTrue(np.array_equal(result[indices, :seq_length], predictions[indices, :seq_length]))

        # With nested tensors
        predictions = np.random.normal(size=(num_samples, 13))
        gatherer = DistributedTensorGatherer(world_size=world_size, num_samples=num_samples)
        for indices, seq_length in zip(input_indices, sequence_lengths):
            gatherer.add_arrays([predictions[indices, :seq_length], predictions[indices]])
        result = gatherer.finalize()

        for indices, seq_length in zip(actual_indices, sequence_lengths):
            self.assertTrue(np.array_equal(result[0][indices, :seq_length], predictions[indices, :seq_length]))
        self.assertTrue(np.array_equal(result[1], predictions))

        # Check if works if varying seq_length is second
        gatherer = DistributedTensorGatherer(world_size=world_size, num_samples=num_samples)
        for indices, seq_length in zip(input_indices, sequence_lengths):
            gatherer.add_arrays([predictions[indices], predictions[indices, :seq_length]])
        result = gatherer.finalize()

        self.assertTrue(np.array_equal(result[0], predictions))
        for indices, seq_length in zip(actual_indices, sequence_lengths):
            self.assertTrue(np.array_equal(result[1][indices, :seq_length], predictions[indices, :seq_length]))

Sylvain Gugger's avatar
Sylvain Gugger committed
146
147
148
149
150
151
    def test_label_smoothing(self):
        epsilon = 0.1
        num_labels = 12
        random_logits = torch.randn(4, 5, num_labels)
        random_labels = torch.randint(0, num_labels, (4, 5))
        loss = torch.nn.functional.cross_entropy(random_logits.view(-1, num_labels), random_labels.view(-1))
152
        model_output = SequenceClassifierOutput(logits=random_logits)
Sylvain Gugger's avatar
Sylvain Gugger committed
153
154
155
156
157
158
159
160
161
162
163
        label_smoothed_loss = LabelSmoother(0.1)(model_output, random_labels)
        log_probs = -torch.nn.functional.log_softmax(random_logits, dim=-1)
        expected_loss = (1 - epsilon) * loss + epsilon * log_probs.mean()
        self.assertTrue(torch.allclose(label_smoothed_loss, expected_loss))

        # With a few -100 labels
        random_labels[0, 1] = -100
        random_labels[2, 1] = -100
        random_labels[2, 3] = -100

        loss = torch.nn.functional.cross_entropy(random_logits.view(-1, num_labels), random_labels.view(-1))
164
        model_output = SequenceClassifierOutput(logits=random_logits)
Sylvain Gugger's avatar
Sylvain Gugger committed
165
166
167
168
169
170
171
172
        label_smoothed_loss = LabelSmoother(0.1)(model_output, random_labels)
        log_probs = -torch.nn.functional.log_softmax(random_logits, dim=-1)
        # Mask the log probs with the -100 labels
        log_probs[0, 1] = 0.0
        log_probs[2, 1] = 0.0
        log_probs[2, 3] = 0.0
        expected_loss = (1 - epsilon) * loss + epsilon * log_probs.sum() / (num_labels * 17)
        self.assertTrue(torch.allclose(label_smoothed_loss, expected_loss))
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

    def test_group_by_length(self):
        # Get some inputs of random lengths
        lengths = torch.randint(0, 25, (100,)).tolist()
        # Put one bigger than the others to check it ends up in first position
        lengths[32] = 50

        indices = list(LengthGroupedSampler(lengths, 4, lengths=lengths))
        # The biggest element should be first
        self.assertEqual(lengths[indices[0]], 50)
        # The indices should be a permutation of range(100)
        self.assertEqual(list(sorted(indices)), list(range(100)))

    def test_distributed_length_grouped(self):
        # Get some inputs of random lengths
        lengths = torch.randint(0, 25, (100,)).tolist()
        # Put one bigger than the others to check it ends up in first position
        lengths[32] = 50

        indices_process_0 = list(DistributedLengthGroupedSampler(lengths, 4, 2, 0, lengths=lengths))
        indices_process_1 = list(DistributedLengthGroupedSampler(lengths, 4, 2, 1, lengths=lengths))
        # The biggest element should be first
        self.assertEqual(lengths[indices_process_0[0]], 50)
        # The indices should be a permutation of range(100)
        self.assertEqual(list(sorted(indices_process_0 + indices_process_1)), list(range(100)))
198
199
200
201
202
203
204
205
206

    def test_get_parameter_names(self):
        model = torch.nn.Sequential(TstLayer(128), torch.nn.ModuleList([TstLayer(128), TstLayer(128)]))
        # fmt: off
        self.assertEqual(
            get_parameter_names(model, [torch.nn.LayerNorm]),
            ['0.linear1.weight', '0.linear1.bias', '0.linear2.weight', '0.linear2.bias', '0.bias', '1.0.linear1.weight', '1.0.linear1.bias', '1.0.linear2.weight', '1.0.linear2.bias', '1.0.bias', '1.1.linear1.weight', '1.1.linear1.bias', '1.1.linear2.weight', '1.1.linear2.bias', '1.1.bias']
        )
        # fmt: on
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

    def test_distributed_sampler_with_loop(self):
        batch_size = 16
        for length in [23, 64, 123]:
            dataset = list(range(length))
            shard1 = DistributedSamplerWithLoop(dataset, batch_size, num_replicas=2, rank=0)
            shard2 = DistributedSamplerWithLoop(dataset, batch_size, num_replicas=2, rank=1)

            # Set seeds
            shard1.set_epoch(0)
            shard2.set_epoch(0)

            # Sample
            samples1 = list(shard1)
            samples2 = list(shard2)

            self.assertTrue(len(samples1) % batch_size == 0)
            self.assertTrue(len(samples2) % batch_size == 0)

            total = []
            for sample1, sample2 in zip(samples1, samples2):
                total += [sample1, sample2]

            self.assertEqual(set(total[:length]), set(dataset))
            self.assertEqual(set(total[length:]), set(total[: (len(total) - length)]))
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263

    def test_sequential_distributed_sampler(self):
        batch_size = 16
        for length in [23, 64, 123]:
            dataset = list(range(length))
            shard1 = SequentialDistributedSampler(dataset, num_replicas=2, rank=0)
            shard2 = SequentialDistributedSampler(dataset, num_replicas=2, rank=1)

            # Sample
            samples1 = list(shard1)
            samples2 = list(shard2)

            total = samples1 + samples2

            self.assertListEqual(total[:length], dataset)
            self.assertListEqual(total[length:], dataset[: (len(total) - length)])

            # With a batch_size passed
            shard1 = SequentialDistributedSampler(dataset, num_replicas=2, rank=0, batch_size=batch_size)
            shard2 = SequentialDistributedSampler(dataset, num_replicas=2, rank=1, batch_size=batch_size)

            # Sample
            samples1 = list(shard1)
            samples2 = list(shard2)

            self.assertTrue(len(samples1) % batch_size == 0)
            self.assertTrue(len(samples2) % batch_size == 0)

            total = samples1 + samples2

            self.assertListEqual(total[:length], dataset)
            self.assertListEqual(total[length:], dataset[: (len(total) - length)])
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305

    def check_iterable_dataset_shard(self, dataset, batch_size, drop_last, num_processes=2, epoch=0):
        # Set the seed for the base dataset to get the proper reference.
        dataset.generator.manual_seed(epoch)
        reference = list(dataset)

        shards = [
            IterableDatasetShard(
                dataset, batch_size=batch_size, drop_last=drop_last, num_processes=num_processes, process_index=i
            )
            for i in range(num_processes)
        ]
        for shard in shards:
            shard.set_epoch(epoch)
        shard_lists = [list(shard) for shard in shards]

        for shard in shard_lists:
            # All shards have a number of samples that is a round multiple of batch size
            self.assertTrue(len(shard) % batch_size == 0)
            # All shards have the same number of samples
            self.assertEqual(len(shard), len(shard_lists[0]))

        observed = []
        for idx in range(0, len(shard_lists[0]), batch_size):
            for shard in shard_lists:
                observed += shard[idx : idx + batch_size]

        # If drop_last is False we loop through samples at the beginning to have a size that is a round multiple of
        # batch_size
        if not drop_last:
            while len(reference) < len(observed):
                reference += reference
        self.assertListEqual(observed, reference[: len(observed)])

    def test_iterable_dataset_shard(self):
        dataset = RandomIterableDataset()

        self.check_iterable_dataset_shard(dataset, 4, drop_last=True, num_processes=2, epoch=0)
        self.check_iterable_dataset_shard(dataset, 4, drop_last=True, num_processes=2, epoch=0)

        self.check_iterable_dataset_shard(dataset, 4, drop_last=True, num_processes=3, epoch=42)
        self.check_iterable_dataset_shard(dataset, 4, drop_last=True, num_processes=3, epoch=42)