test_trainer_utils.py 3.79 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# coding=utf-8
# Copyright 2018 the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import numpy as np

from transformers.file_utils import is_torch_available
from transformers.testing_utils import require_torch


if is_torch_available():
Sylvain Gugger's avatar
Sylvain Gugger committed
25
26
27
28
    import torch

    from transformers.modeling_outputs import SequenceClassifierOutput
    from transformers.trainer_pt_utils import DistributedTensorGatherer, LabelSmoother
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61


@require_torch
class TrainerUtilsTest(unittest.TestCase):
    def test_distributed_tensor_gatherer(self):
        # Simulate a result with a dataset of size 21, 4 processes and chunks of lengths 2, 3, 1
        world_size = 4
        num_samples = 21
        input_indices = [
            [0, 1, 6, 7, 12, 13, 18, 19],
            [2, 3, 4, 8, 9, 10, 14, 15, 16, 20, 0, 1],
            [5, 11, 17, 2],
        ]

        predictions = np.random.normal(size=(num_samples, 13))
        gatherer = DistributedTensorGatherer(world_size=world_size, num_samples=num_samples)
        for indices in input_indices:
            gatherer.add_arrays(predictions[indices])
        result = gatherer.finalize()
        self.assertTrue(np.array_equal(result, predictions))

        # With nested tensors
        gatherer = DistributedTensorGatherer(world_size=world_size, num_samples=num_samples)
        for indices in input_indices:
            gatherer.add_arrays([predictions[indices], [predictions[indices], predictions[indices]]])
        result = gatherer.finalize()
        self.assertTrue(isinstance(result, list))
        self.assertTrue(len(result), 2)
        self.assertTrue(isinstance(result[1], list))
        self.assertTrue(len(result[1]), 2)
        self.assertTrue(np.array_equal(result[0], predictions))
        self.assertTrue(np.array_equal(result[1][0], predictions))
        self.assertTrue(np.array_equal(result[1][1], predictions))
Sylvain Gugger's avatar
Sylvain Gugger committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

    def test_label_smoothing(self):
        epsilon = 0.1
        num_labels = 12
        random_logits = torch.randn(4, 5, num_labels)
        random_labels = torch.randint(0, num_labels, (4, 5))
        loss = torch.nn.functional.cross_entropy(random_logits.view(-1, num_labels), random_labels.view(-1))
        model_output = SequenceClassifierOutput(loss=loss, logits=random_logits)
        label_smoothed_loss = LabelSmoother(0.1)(model_output, random_labels)
        log_probs = -torch.nn.functional.log_softmax(random_logits, dim=-1)
        expected_loss = (1 - epsilon) * loss + epsilon * log_probs.mean()
        self.assertTrue(torch.allclose(label_smoothed_loss, expected_loss))

        # With a few -100 labels
        random_labels[0, 1] = -100
        random_labels[2, 1] = -100
        random_labels[2, 3] = -100

        loss = torch.nn.functional.cross_entropy(random_logits.view(-1, num_labels), random_labels.view(-1))
        model_output = SequenceClassifierOutput(loss=loss, logits=random_logits)
        label_smoothed_loss = LabelSmoother(0.1)(model_output, random_labels)
        log_probs = -torch.nn.functional.log_softmax(random_logits, dim=-1)
        # Mask the log probs with the -100 labels
        log_probs[0, 1] = 0.0
        log_probs[2, 1] = 0.0
        log_probs[2, 3] = 0.0
        expected_loss = (1 - epsilon) * loss + epsilon * log_probs.sum() / (num_labels * 17)
        self.assertTrue(torch.allclose(label_smoothed_loss, expected_loss))