test_finetune_trainer.py 6.16 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Suraj Patil's avatar
Suraj Patil committed
15
16
import os
import sys
17
import unittest
Suraj Patil's avatar
Suraj Patil committed
18
19
from unittest.mock import patch

Sylvain Gugger's avatar
Sylvain Gugger committed
20
from transformers.file_utils import is_apex_available
21
from transformers.integrations import is_fairscale_available
22
23
24
25
26
27
28
29
from transformers.testing_utils import (
    TestCasePlus,
    execute_subprocess_async,
    get_gpu_count,
    require_torch_multi_gpu,
    require_torch_non_multi_gpu,
    slow,
)
Sylvain Gugger's avatar
Sylvain Gugger committed
30
31
from transformers.trainer_callback import TrainerState
from transformers.trainer_utils import set_seed
Suraj Patil's avatar
Suraj Patil committed
32

Sylvain Gugger's avatar
Sylvain Gugger committed
33
from .finetune_trainer import main
34

Suraj Patil's avatar
Suraj Patil committed
35

36
set_seed(42)
Suraj Patil's avatar
Suraj Patil committed
37
MARIAN_MODEL = "sshleifer/student_marian_en_ro_6_1"
Sylvain Gugger's avatar
Sylvain Gugger committed
38
MBART_TINY = "sshleifer/tiny-mbart"
Suraj Patil's avatar
Suraj Patil committed
39
40


41
42
43
44
45
46
47
48
49
50
51
# a candidate for testing_utils
def require_fairscale(test_case):
    """
    Decorator marking a test that requires fairscale
    """
    if not is_fairscale_available():
        return unittest.skip("test requires fairscale")(test_case)
    else:
        return test_case


52
53
54
55
56
57
58
59
60
61
62
# a candidate for testing_utils
def require_apex(test_case):
    """
    Decorator marking a test that requires apex
    """
    if not is_apex_available():
        return unittest.skip("test requires apex")(test_case)
    else:
        return test_case


63
class TestFinetuneTrainer(TestCasePlus):
64
65
    def finetune_trainer_quick(self, distributed=None, extra_args_str=None):
        output_dir = self.run_trainer(1, "12", MBART_TINY, 1, distributed, extra_args_str)
66
67
68
69
        logs = TrainerState.load_from_json(os.path.join(output_dir, "trainer_state.json")).log_history
        eval_metrics = [log for log in logs if "eval_loss" in log.keys()]
        first_step_stats = eval_metrics[0]
        assert "eval_bleu" in first_step_stats
Suraj Patil's avatar
Suraj Patil committed
70

71
72
73
74
75
76
77
78
79
80
81
82
83
    @require_torch_non_multi_gpu
    def test_finetune_trainer_no_dist(self):
        self.finetune_trainer_quick()

    # the following 2 tests verify that the trainer can handle distributed and non-distributed with n_gpu > 1
    @require_torch_multi_gpu
    def test_finetune_trainer_dp(self):
        self.finetune_trainer_quick(distributed=False)

    @require_torch_multi_gpu
    def test_finetune_trainer_ddp(self):
        self.finetune_trainer_quick(distributed=True)

84
    # it's crucial to test --sharded_ddp w/ and w/o --fp16
85
86
87
88
89
90
91
92
93
94
    @require_torch_multi_gpu
    @require_fairscale
    def test_finetune_trainer_ddp_sharded_ddp(self):
        self.finetune_trainer_quick(distributed=True, extra_args_str="--sharded_ddp")

    @require_torch_multi_gpu
    @require_fairscale
    def test_finetune_trainer_ddp_sharded_ddp_fp16(self):
        self.finetune_trainer_quick(distributed=True, extra_args_str="--sharded_ddp --fp16")

95
96
97
98
    @require_apex
    def test_finetune_trainer_apex(self):
        self.finetune_trainer_quick(extra_args_str="--fp16 --fp16_backend=apex")

99
100
101
    @slow
    def test_finetune_trainer_slow(self):
        # There is a missing call to __init__process_group somewhere
102
103
104
        output_dir = self.run_trainer(
            eval_steps=2, max_len="128", model_name=MARIAN_MODEL, num_train_epochs=10, distributed=False
        )
Suraj Patil's avatar
Suraj Patil committed
105

106
107
108
109
110
        # Check metrics
        logs = TrainerState.load_from_json(os.path.join(output_dir, "trainer_state.json")).log_history
        eval_metrics = [log for log in logs if "eval_loss" in log.keys()]
        first_step_stats = eval_metrics[0]
        last_step_stats = eval_metrics[-1]
111

112
113
        assert first_step_stats["eval_bleu"] < last_step_stats["eval_bleu"]  # model learned nothing
        assert isinstance(last_step_stats["eval_bleu"], float)
114

115
116
117
118
119
        # test if do_predict saves generations and metrics
        contents = os.listdir(output_dir)
        contents = {os.path.basename(p) for p in contents}
        assert "test_generations.txt" in contents
        assert "test_results.json" in contents
120

121
    def run_trainer(
122
123
124
125
126
127
128
        self,
        eval_steps: int,
        max_len: str,
        model_name: str,
        num_train_epochs: int,
        distributed: bool = False,
        extra_args_str: str = None,
129
    ):
130
        data_dir = self.examples_dir / "seq2seq/test_data/wmt_en_ro"
131
        output_dir = self.get_auto_remove_tmp_dir()
132
        args = f"""
133
134
135
136
137
138
139
            --model_name_or_path {model_name}
            --data_dir {data_dir}
            --output_dir {output_dir}
            --overwrite_output_dir
            --n_train 8
            --n_val 8
            --max_source_length {max_len}
140
141
            --max_target_length {max_len}
            --val_max_target_length {max_len}
142
143
144
145
146
147
            --do_train
            --do_eval
            --do_predict
            --num_train_epochs {str(num_train_epochs)}
            --per_device_train_batch_size 4
            --per_device_eval_batch_size 4
148
            --learning_rate 3e-3
149
            --warmup_steps 8
Sylvain Gugger's avatar
Sylvain Gugger committed
150
            --evaluation_strategy steps
151
152
153
154
155
156
157
158
159
160
161
162
            --predict_with_generate
            --logging_steps 0
            --save_steps {str(eval_steps)}
            --eval_steps {str(eval_steps)}
            --sortish_sampler
            --label_smoothing 0.1
            --adafactor
            --task translation
            --tgt_lang ro_RO
            --src_lang en_XX
        """.split()
        # --eval_beams  2
163

164
165
166
        if extra_args_str is not None:
            args.extend(extra_args_str.split())

167
168
        if distributed:
            n_gpu = get_gpu_count()
169
170
171
172
173
174
175
            distributed_args = f"""
                -m torch.distributed.launch
                --nproc_per_node={n_gpu}
                {self.test_file_dir}/finetune_trainer.py
            """.split()
            cmd = [sys.executable] + distributed_args + args
            execute_subprocess_async(cmd, env=self.get_env())
176
        else:
177
            testargs = ["finetune_trainer.py"] + args
178
179
            with patch.object(sys, "argv", testargs):
                main()
180

181
        return output_dir