test_finetune_trainer.py 9.06 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Suraj Patil's avatar
Suraj Patil committed
15
16
17
18
import os
import sys
from unittest.mock import patch

19
from transformers import BertTokenizer, EncoderDecoderModel
20
from transformers.file_utils import is_datasets_available
21
22
23
24
25
26
27
28
from transformers.testing_utils import (
    TestCasePlus,
    execute_subprocess_async,
    get_gpu_count,
    require_torch_multi_gpu,
    require_torch_non_multi_gpu,
    slow,
)
Sylvain Gugger's avatar
Sylvain Gugger committed
29
30
from transformers.trainer_callback import TrainerState
from transformers.trainer_utils import set_seed
Suraj Patil's avatar
Suraj Patil committed
31

32
33
from .finetune_trainer import Seq2SeqTrainingArguments, main
from .seq2seq_trainer import Seq2SeqTrainer
34

Suraj Patil's avatar
Suraj Patil committed
35

36
set_seed(42)
Suraj Patil's avatar
Suraj Patil committed
37
MARIAN_MODEL = "sshleifer/student_marian_en_ro_6_1"
Sylvain Gugger's avatar
Sylvain Gugger committed
38
MBART_TINY = "sshleifer/tiny-mbart"
Suraj Patil's avatar
Suraj Patil committed
39
40


41
class TestFinetuneTrainer(TestCasePlus):
42
43
    def finetune_trainer_quick(self, distributed=None):
        output_dir = self.run_trainer(1, "12", MBART_TINY, 1, distributed)
44
45
46
47
        logs = TrainerState.load_from_json(os.path.join(output_dir, "trainer_state.json")).log_history
        eval_metrics = [log for log in logs if "eval_loss" in log.keys()]
        first_step_stats = eval_metrics[0]
        assert "eval_bleu" in first_step_stats
Suraj Patil's avatar
Suraj Patil committed
48

49
50
51
52
53
54
55
56
57
58
59
60
61
    @require_torch_non_multi_gpu
    def test_finetune_trainer_no_dist(self):
        self.finetune_trainer_quick()

    # the following 2 tests verify that the trainer can handle distributed and non-distributed with n_gpu > 1
    @require_torch_multi_gpu
    def test_finetune_trainer_dp(self):
        self.finetune_trainer_quick(distributed=False)

    @require_torch_multi_gpu
    def test_finetune_trainer_ddp(self):
        self.finetune_trainer_quick(distributed=True)

62
63
64
    @slow
    def test_finetune_trainer_slow(self):
        # There is a missing call to __init__process_group somewhere
65
66
67
        output_dir = self.run_trainer(
            eval_steps=2, max_len="128", model_name=MARIAN_MODEL, num_train_epochs=10, distributed=False
        )
Suraj Patil's avatar
Suraj Patil committed
68

69
70
71
72
73
        # Check metrics
        logs = TrainerState.load_from_json(os.path.join(output_dir, "trainer_state.json")).log_history
        eval_metrics = [log for log in logs if "eval_loss" in log.keys()]
        first_step_stats = eval_metrics[0]
        last_step_stats = eval_metrics[-1]
74

75
76
        assert first_step_stats["eval_bleu"] < last_step_stats["eval_bleu"]  # model learned nothing
        assert isinstance(last_step_stats["eval_bleu"], float)
77

78
79
80
81
82
        # test if do_predict saves generations and metrics
        contents = os.listdir(output_dir)
        contents = {os.path.basename(p) for p in contents}
        assert "test_generations.txt" in contents
        assert "test_results.json" in contents
83

84
85
86
87
88
89
90
91
92
93
94
    @slow
    def test_finetune_bert2bert(self):
        if not is_datasets_available():
            return

        import datasets

        bert2bert = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny", "prajjwal1/bert-tiny")
        tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")

        bert2bert.config.vocab_size = bert2bert.config.encoder.vocab_size
95
        bert2bert.config.eos_token_id = tokenizer.sep_token_id
96
        bert2bert.config.decoder_start_token_id = tokenizer.cls_token_id
97
        bert2bert.config.max_length = 128
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

        train_dataset = datasets.load_dataset("cnn_dailymail", "3.0.0", split="train[:1%]")
        val_dataset = datasets.load_dataset("cnn_dailymail", "3.0.0", split="validation[:1%]")

        train_dataset = train_dataset.select(range(32))
        val_dataset = val_dataset.select(range(16))

        rouge = datasets.load_metric("rouge")

        batch_size = 4

        def _map_to_encoder_decoder_inputs(batch):
            # Tokenizer will automatically set [BOS] <text> [EOS]
            inputs = tokenizer(batch["article"], padding="max_length", truncation=True, max_length=512)
            outputs = tokenizer(batch["highlights"], padding="max_length", truncation=True, max_length=128)
            batch["input_ids"] = inputs.input_ids
            batch["attention_mask"] = inputs.attention_mask

            batch["decoder_input_ids"] = outputs.input_ids
            batch["labels"] = outputs.input_ids.copy()
            batch["labels"] = [
                [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"]
            ]
            batch["decoder_attention_mask"] = outputs.attention_mask

            assert all([len(x) == 512 for x in inputs.input_ids])
            assert all([len(x) == 128 for x in outputs.input_ids])

            return batch

        def _compute_metrics(pred):
            labels_ids = pred.label_ids
            pred_ids = pred.predictions

            # all unnecessary tokens are removed
            pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
            label_str = tokenizer.batch_decode(labels_ids, skip_special_tokens=True)

            rouge_output = rouge.compute(predictions=pred_str, references=label_str, rouge_types=["rouge2"])[
                "rouge2"
            ].mid

            return {
                "rouge2_precision": round(rouge_output.precision, 4),
                "rouge2_recall": round(rouge_output.recall, 4),
                "rouge2_fmeasure": round(rouge_output.fmeasure, 4),
            }

        # map train dataset
        train_dataset = train_dataset.map(
            _map_to_encoder_decoder_inputs,
            batched=True,
            batch_size=batch_size,
            remove_columns=["article", "highlights"],
        )
        train_dataset.set_format(
            type="torch",
            columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"],
        )

        # same for validation dataset
        val_dataset = val_dataset.map(
            _map_to_encoder_decoder_inputs,
            batched=True,
            batch_size=batch_size,
            remove_columns=["article", "highlights"],
        )
        val_dataset.set_format(
            type="torch",
            columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"],
        )

        output_dir = self.get_auto_remove_tmp_dir()

        training_args = Seq2SeqTrainingArguments(
            output_dir=output_dir,
            per_device_train_batch_size=batch_size,
            per_device_eval_batch_size=batch_size,
            predict_with_generate=True,
Sylvain Gugger's avatar
Sylvain Gugger committed
177
            evaluation_strategy="steps",
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
            do_train=True,
            do_eval=True,
            warmup_steps=0,
            eval_steps=2,
            logging_steps=2,
        )

        # instantiate trainer
        trainer = Seq2SeqTrainer(
            model=bert2bert,
            args=training_args,
            compute_metrics=_compute_metrics,
            train_dataset=train_dataset,
            eval_dataset=val_dataset,
        )

        # start training
        trainer.train()

197
198
199
    def run_trainer(
        self, eval_steps: int, max_len: str, model_name: str, num_train_epochs: int, distributed: bool = False
    ):
200
        data_dir = self.examples_dir / "seq2seq/test_data/wmt_en_ro"
201
        output_dir = self.get_auto_remove_tmp_dir()
202
        args = f"""
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
            --model_name_or_path {model_name}
            --data_dir {data_dir}
            --output_dir {output_dir}
            --overwrite_output_dir
            --n_train 8
            --n_val 8
            --max_source_length {max_len}
            --max_target_length {max_len}
            --val_max_target_length {max_len}
            --do_train
            --do_eval
            --do_predict
            --num_train_epochs {str(num_train_epochs)}
            --per_device_train_batch_size 4
            --per_device_eval_batch_size 4
218
            --learning_rate 3e-3
219
            --warmup_steps 8
Sylvain Gugger's avatar
Sylvain Gugger committed
220
            --evaluation_strategy steps
221
222
223
224
225
226
227
228
229
230
231
232
            --predict_with_generate
            --logging_steps 0
            --save_steps {str(eval_steps)}
            --eval_steps {str(eval_steps)}
            --sortish_sampler
            --label_smoothing 0.1
            --adafactor
            --task translation
            --tgt_lang ro_RO
            --src_lang en_XX
        """.split()
        # --eval_beams  2
233

234
235
        if distributed:
            n_gpu = get_gpu_count()
236
237
238
239
240
241
242
            distributed_args = f"""
                -m torch.distributed.launch
                --nproc_per_node={n_gpu}
                {self.test_file_dir}/finetune_trainer.py
            """.split()
            cmd = [sys.executable] + distributed_args + args
            execute_subprocess_async(cmd, env=self.get_env())
243
        else:
244
            testargs = ["finetune_trainer.py"] + args
245
246
            with patch.object(sys, "argv", testargs):
                main()
247

248
        return output_dir