tokenization_roberta.py 9.32 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# coding=utf-8
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for RoBERTa."""
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import json
import logging
import re
Julien Chaumond's avatar
Julien Chaumond committed
22
23
from io import open
import six
24

25
from .tokenization_utils import PreTrainedTokenizer, clean_up_tokenization
26
27
28
29
30
from .tokenization_gpt2 import GPT2Tokenizer

logger = logging.getLogger(__name__)

VOCAB_FILES_NAMES = {
31
    'vocab_file': 'dict.txt',
32
33
34
}

PRETRAINED_VOCAB_FILES_MAP = {
35
36
37
38
39
40
    'vocab_file':
        {
            'roberta-base': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-base-dict.txt",
            'roberta-large': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-base-dict.txt",
            'roberta-large-mnli': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-base-dict.txt",
        },
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
}

PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
    'roberta-base': 512,
    'roberta-large': 512,
    'roberta-large-mnli': 512,
}

SPACE_NORMALIZER = re.compile(r"\s+")

def tokenize_line(line):
    line = SPACE_NORMALIZER.sub(" ", line)
    line = line.strip()
    return line.split()


class Dictionary(object):
    """
    A mapping from symbols to consecutive integers

    From Facebook's fairseq.
    """

    def __init__(
        self,
        pad='<pad>',
        eos='</s>',
        unk='<unk>',
        bos='<s>',
        extra_special_symbols=None,
    ):
        self.unk_word, self.pad_word, self.eos_word = unk, pad, eos
        self.symbols = []
        self.count = []
        self.indices = {}
        self.bos_index = self.add_symbol(bos)
        self.pad_index = self.add_symbol(pad)
        self.eos_index = self.add_symbol(eos)
        self.unk_index = self.add_symbol(unk)
        if extra_special_symbols:
            for s in extra_special_symbols:
                self.add_symbol(s)
        self.nspecial = len(self.symbols)

    def __getitem__(self, idx):
        if idx < len(self.symbols):
            return self.symbols[idx]
        return self.unk_word

    def index(self, sym):
        """Returns the index of the specified symbol"""
        assert isinstance(sym, str)
        if sym in self.indices:
            return self.indices[sym]
        return self.unk_index

    def add_symbol(self, word, n=1):
        """Adds a word to the dictionary"""
        if word in self.indices:
            idx = self.indices[word]
            self.count[idx] = self.count[idx] + n
            return idx
        else:
            idx = len(self.symbols)
            self.indices[word] = idx
            self.symbols.append(word)
            self.count.append(n)
            return idx

    @classmethod
    def load(cls, f, ignore_utf_errors=False):
        """Loads the dictionary from a text file with the format:

        ```
        <symbol0> <count0>
        <symbol1> <count1>
        ...
        ```
        """
        d = cls()
        d.add_from_file(f, ignore_utf_errors)
        return d

    def add_from_file(self, f, ignore_utf_errors=False):
        """
        Loads a pre-existing dictionary from a text file and adds its symbols
        to this instance.
        """
Julien Chaumond's avatar
Julien Chaumond committed
129
        if isinstance(f, six.string_types):
130
131
132
133
134
135
136
137
138
139
140
141
142
143
            try:
                if not ignore_utf_errors:
                    with open(f, 'r', encoding='utf-8') as fd:
                        self.add_from_file(fd)
                else:
                    with open(f, 'r', encoding='utf-8', errors='ignore') as fd:
                        self.add_from_file(fd)
            except FileNotFoundError as fnfe:
                raise fnfe
            except UnicodeError:
                raise Exception("Incorrect encoding detected in {}, please "
                                "rebuild the dataset".format(f))
            return

144
        lines = f.read().splitlines()
145
146
147
148
149
150
151
152
153
        for line in lines:
            idx = line.rfind(' ')
            if idx == -1:
                raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'")
            word = line[:idx]
            count = int(line[idx + 1:])
            self.indices[word] = len(self.symbols)
            self.symbols.append(word)
            self.count.append(count)
154

155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
    def encode_line(self, line, line_tokenizer=tokenize_line, add_if_not_exist=True,
                    consumer=None, append_eos=True, reverse_order=False):
        words = line_tokenizer(line)
        if reverse_order:
            words = list(reversed(words))
        nwords = len(words)
        ids = [0] * (nwords + 1 if append_eos else nwords)

        for i, word in enumerate(words):
            if add_if_not_exist:
                idx = self.add_symbol(word)
            else:
                idx = self.index(word)
            if consumer is not None:
                consumer(word, idx)
            ids[i] = idx
        if append_eos:
            ids[nwords] = self.eos_index
        return ids


class RobertaTokenizer(PreTrainedTokenizer):
    """
    RoBERTa tokenizer. Peculiarities:
        - GPT-2 tokenizer with a different integer mapping on top.
    """
    vocab_files_names = VOCAB_FILES_NAMES
    pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
    max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES

185
    def __init__(self, vocab_file,
186
                 bos_token="<s>", eos_token="</s>", **kwargs):
187
        super(RobertaTokenizer, self).__init__(cls_token=bos_token, sep_token=eos_token, eos_token=eos_token, **kwargs)
188
189

        self.gpt2_tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
190
        self.dictionary = Dictionary.load(vocab_file)
191
192
193
194
195

    def _tokenize(self, text):
        """ Use GPT-2 Tokenizer """
        return self.gpt2_tokenizer._tokenize(text)

196
    def encode(self, text, *args):
197
198
        """ Converts a string in a sequence of ids (integer), using the tokenizer and vocabulary.
        """
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
        bpe_sentence = [self.cls_token] + \
                       self.gpt2_tokenizer.convert_tokens_to_ids(self.tokenize(text)) + \
                       [self.sep_token]

        if len(args):
            for additional_sentence in args:
                bpe_sentence += [self.sep_token
                                 ] + \
                                self.gpt2_tokenizer.convert_tokens_to_ids(self.tokenize(additional_sentence)) + \
                                [self.sep_token]

        return self.dictionary.encode_line(' '.join([str(token) for token in bpe_sentence]), append_eos=False)

    def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True):
        """ Converts a sequence of ids (integer) in a string, using the tokenizer and vocabulary
            with options to remove special tokens and clean up tokenization spaces.
            Handles sentence pairs.
        """
        filtered_tokens = self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)

        if any(isinstance(element, list) for element in filtered_tokens):
            texts = []
            for element in filtered_tokens:
                text = self.convert_tokens_to_string(element)
                if clean_up_tokenization_spaces:
                    text = clean_up_tokenization(text)
                    texts.append(text)
            return texts
        else:
            text = self.convert_tokens_to_string(filtered_tokens)
            if clean_up_tokenization_spaces:
                text = clean_up_tokenization(text)
            return text
232
233
234
235
236
237
238
239
240
241
242
243
244
245

    def _convert_token_to_id(self, token):
        return self.dictionary.index(token)

    def _convert_id_to_token(self, index):
        symbol = self.dictionary[index]
        try:
            idx = int(symbol)
            return self.gpt2_tokenizer._convert_id_to_token(idx)
        except:
            return symbol

    def convert_tokens_to_string(self, tokens):
        return self.gpt2_tokenizer.convert_tokens_to_string(tokens)
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266

    def convert_ids_to_tokens(self, ids, skip_special_tokens=False):
        # Remove the first and last tokens which are cls and sep tokens
        ids = ids[1:-1]
        # If multi sentence, then split (multi sentence found by looking for two sequential sep tokens)
        ids = [list(map(int, example.split(' '))) for example in ' '.join([str(id) for id in ids]).split(' 2 2 ')]

        if len(ids) == 1:
            tokens = self.gpt2_tokenizer.convert_ids_to_tokens(list(map(lambda id: int(self.dictionary[id]), ids[0])))
        else:
            tokens = []
            for example in ids:
                tokens += [
                    self.gpt2_tokenizer.convert_ids_to_tokens(list(map(lambda id: int(self.dictionary[id]), example)))]
        return tokens

    def convert_tokens_to_ids(self, tokens):
        tokens = " ".join(str(x) for x in self.gpt2_tokenizer.convert_tokens_to_ids(tokens))
        bpe_sentence = '<s> ' + tokens + ' </s>'
        return self.dictionary.encode_line(bpe_sentence, append_eos=False)