"vita/git@developer.sourcefind.cn:modelzoo/vita_pytorch.git" did not exist on "eb217184d416328d3182374794a1cc2ca89f73e2"
tokenization_roberta.py 6.89 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# coding=utf-8
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for RoBERTa."""
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import json
import logging
import re

from .tokenization_utils import PreTrainedTokenizer
from .tokenization_gpt2 import GPT2Tokenizer

logger = logging.getLogger(__name__)

VOCAB_FILES_NAMES = {
    'dict_file': 'dict.txt',
}

PRETRAINED_VOCAB_FILES_MAP = {
    'dict_file':
    {
        'roberta-base': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-base-dict.txt",
        'roberta-large': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-base-dict.txt",
        'roberta-large-mnli': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-base-dict.txt",
    },
}

PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
    'roberta-base': 512,
    'roberta-large': 512,
    'roberta-large-mnli': 512,
}


SPACE_NORMALIZER = re.compile(r"\s+")

def tokenize_line(line):
    line = SPACE_NORMALIZER.sub(" ", line)
    line = line.strip()
    return line.split()


class Dictionary(object):
    """
    A mapping from symbols to consecutive integers

    From Facebook's fairseq.
    """

    def __init__(
        self,
        pad='<pad>',
        eos='</s>',
        unk='<unk>',
        bos='<s>',
        extra_special_symbols=None,
    ):
        self.unk_word, self.pad_word, self.eos_word = unk, pad, eos
        self.symbols = []
        self.count = []
        self.indices = {}
        self.bos_index = self.add_symbol(bos)
        self.pad_index = self.add_symbol(pad)
        self.eos_index = self.add_symbol(eos)
        self.unk_index = self.add_symbol(unk)
        if extra_special_symbols:
            for s in extra_special_symbols:
                self.add_symbol(s)
        self.nspecial = len(self.symbols)

    def __getitem__(self, idx):
        if idx < len(self.symbols):
            return self.symbols[idx]
        return self.unk_word

    def index(self, sym):
        """Returns the index of the specified symbol"""
        assert isinstance(sym, str)
        if sym in self.indices:
            return self.indices[sym]
        return self.unk_index

    def add_symbol(self, word, n=1):
        """Adds a word to the dictionary"""
        if word in self.indices:
            idx = self.indices[word]
            self.count[idx] = self.count[idx] + n
            return idx
        else:
            idx = len(self.symbols)
            self.indices[word] = idx
            self.symbols.append(word)
            self.count.append(n)
            return idx

    @classmethod
    def load(cls, f, ignore_utf_errors=False):
        """Loads the dictionary from a text file with the format:

        ```
        <symbol0> <count0>
        <symbol1> <count1>
        ...
        ```
        """
        d = cls()
        d.add_from_file(f, ignore_utf_errors)
        return d

    def add_from_file(self, f, ignore_utf_errors=False):
        """
        Loads a pre-existing dictionary from a text file and adds its symbols
        to this instance.
        """
        if isinstance(f, str):
            try:
                if not ignore_utf_errors:
                    with open(f, 'r', encoding='utf-8') as fd:
                        self.add_from_file(fd)
                else:
                    with open(f, 'r', encoding='utf-8', errors='ignore') as fd:
                        self.add_from_file(fd)
            except FileNotFoundError as fnfe:
                raise fnfe
            except UnicodeError:
                raise Exception("Incorrect encoding detected in {}, please "
                                "rebuild the dataset".format(f))
            return

        lines = f.readlines()
        for line in lines:
            idx = line.rfind(' ')
            if idx == -1:
                raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'")
            word = line[:idx]
            count = int(line[idx + 1:])
            self.indices[word] = len(self.symbols)
            self.symbols.append(word)
            self.count.append(count)
    
    def encode_line(self, line, line_tokenizer=tokenize_line, add_if_not_exist=True,
                    consumer=None, append_eos=True, reverse_order=False):
        words = line_tokenizer(line)
        if reverse_order:
            words = list(reversed(words))
        nwords = len(words)
        ids = [0] * (nwords + 1 if append_eos else nwords)

        for i, word in enumerate(words):
            if add_if_not_exist:
                idx = self.add_symbol(word)
            else:
                idx = self.index(word)
            if consumer is not None:
                consumer(word, idx)
            ids[i] = idx
        if append_eos:
            ids[nwords] = self.eos_index
        return ids




class RobertaTokenizer(PreTrainedTokenizer):
    """
    RoBERTa tokenizer. Peculiarities:
        - GPT-2 tokenizer with a different integer mapping on top.
    """
    vocab_files_names = VOCAB_FILES_NAMES
    pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
    max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES

    def __init__(self, dict_file,
                 bos_token="<s>", eos_token="</s>", **kwargs):
        super(RobertaTokenizer, self).__init__(bos_token=bos_token, eos_token=eos_token, **kwargs)

        self.gpt2_tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
        self.dictionary = Dictionary.load(dict_file)

    def _tokenize(self, text):
        """ Use GPT-2 Tokenizer """
        return self.gpt2_tokenizer._tokenize(text)

    def encode(self, text):
        """ Converts a string in a sequence of ids (integer), using the tokenizer and vocabulary.
        """
        gpt2_tokens_joined = " ".join(
            str(x) for x in self.gpt2_tokenizer.convert_tokens_to_ids(self.tokenize(text))
        )
        bpe_sentence = '<s> ' + gpt2_tokens_joined + ' </s>'
        return self.dictionary.encode_line(bpe_sentence, append_eos=False)

    def _convert_token_to_id(self, token):
        return self.dictionary.index(token)

    def _convert_id_to_token(self, index):
        symbol = self.dictionary[index]
        try:
            idx = int(symbol)
            return self.gpt2_tokenizer._convert_id_to_token(idx)
        except:
            return symbol

    def convert_tokens_to_string(self, tokens):
        return self.gpt2_tokenizer.convert_tokens_to_string(tokens)