test_generation_utils.py 134 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2020 The HuggingFace Team Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a clone of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


17
import inspect
18
19
20
import unittest

from transformers import is_torch_available
21
from transformers.testing_utils import require_torch, slow, tooslow, torch_device
22

23
from ..test_modeling_common import floats_tensor, ids_tensor
24

25
26
27
28

if is_torch_available():
    import torch

29
    from transformers import (
30
        AutoModelForCausalLM,
31
32
        AutoModelForSeq2SeqLM,
        AutoTokenizer,
33
34
35
36
        BartForConditionalGeneration,
        BartTokenizer,
        GPT2LMHeadModel,
        GPT2Tokenizer,
37
        ImageGPTForCausalImageModeling,
38
        OPTForCausalLM,
39
40
        Speech2TextForConditionalGeneration,
        SpeechEncoderDecoderModel,
41
        T5ForConditionalGeneration,
42
        VisionEncoderDecoderModel,
43
        pipeline,
44
45
        top_k_top_p_filtering,
    )
46
    from transformers.generation_beam_constraints import DisjunctiveConstraint, PhrasalConstraint
47
    from transformers.generation_beam_search import BeamSearchScorer, ConstrainedBeamSearchScorer
48
    from transformers.generation_logits_process import (
49
50
        ForcedBOSTokenLogitsProcessor,
        ForcedEOSTokenLogitsProcessor,
51
        HammingDiversityLogitsProcessor,
52
        InfNanRemoveLogitsProcessor,
53
54
55
56
57
58
59
60
61
        LogitsProcessorList,
        MinLengthLogitsProcessor,
        NoBadWordsLogitsProcessor,
        NoRepeatNGramLogitsProcessor,
        RepetitionPenaltyLogitsProcessor,
        TemperatureLogitsWarper,
        TopKLogitsWarper,
        TopPLogitsWarper,
    )
62
    from transformers.generation_stopping_criteria import MaxLengthCriteria, StoppingCriteria, StoppingCriteriaList
63
    from transformers.generation_utils import (
64
65
        BeamSampleDecoderOnlyOutput,
        BeamSampleEncoderDecoderOutput,
66
67
68
69
70
71
72
        BeamSearchDecoderOnlyOutput,
        BeamSearchEncoderDecoderOutput,
        GreedySearchDecoderOnlyOutput,
        GreedySearchEncoderDecoderOutput,
        SampleDecoderOnlyOutput,
        SampleEncoderDecoderOutput,
    )
73
74
75
76
77


class GenerationTesterMixin:
    model_tester = None
    all_generative_model_classes = ()
Suraj Patil's avatar
Suraj Patil committed
78
    input_name = "input_ids"
79
80
81

    def _get_input_ids_and_config(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Suraj Patil's avatar
Suraj Patil committed
82
        input_ids = inputs_dict[self.input_name]
83
84
85
86
87
88
89
90
91
92
93

        # cut to half length & take max batch_size 3
        max_batch_size = 2
        sequence_length = input_ids.shape[-1] // 2
        input_ids = input_ids[:max_batch_size, :sequence_length]

        # generate max 3 tokens
        max_length = input_ids.shape[-1] + 3
        if config.eos_token_id is not None and config.pad_token_id is None:
            # hack to allow generate for models such as GPT2 as is done in `generate()`
            config.pad_token_id = config.eos_token_id
94
95
96
97
98
99
100

        # TransfoXL has no attention mask
        if "transfoxl" in config.__class__.__name__.lower():
            attention_mask = None
        else:
            attention_mask = torch.ones_like(input_ids, dtype=torch.long)[:max_batch_size, :sequence_length]

101
102
103
        return config, input_ids, attention_mask, max_length

    @staticmethod
104
105
106
107
108
109
110
111
    def _get_logits_processor_and_kwargs(
        input_length,
        eos_token_id,
        forced_bos_token_id=None,
        forced_eos_token_id=None,
        max_length=None,
        diversity_penalty=None,
    ):
112
        process_kwargs = {
113
            "min_length": input_length + 1 if max_length is None else max_length - 1,
114
115
116
117
118
119
            "bad_words_ids": [[1, 0]],
            "no_repeat_ngram_size": 2,
            "repetition_penalty": 1.2,
        }
        logits_processor = LogitsProcessorList(
            (
120
121
122
123
124
125
126
                [
                    HammingDiversityLogitsProcessor(diversity_penalty, num_beams=2, num_beam_groups=2),
                ]
                if diversity_penalty is not None
                else []
            )
            + (
127
128
129
130
131
132
                [
                    MinLengthLogitsProcessor(process_kwargs["min_length"], eos_token_id),
                ]
                if eos_token_id is not None
                else []
            )
133
134
135
136
137
138
139
140
141
142
143
144
            + (
                [
                    ForcedBOSTokenLogitsProcessor(forced_bos_token_id),
                ]
                if forced_bos_token_id is not None
                else []
            )
            + (
                [ForcedEOSTokenLogitsProcessor(max_length, forced_eos_token_id)]
                if forced_eos_token_id is not None
                else []
            )
145
146
147
148
149
150
151
152
153
154
155
156
157
            + [
                NoBadWordsLogitsProcessor(process_kwargs["bad_words_ids"], eos_token_id),
                NoRepeatNGramLogitsProcessor(process_kwargs["no_repeat_ngram_size"]),
                RepetitionPenaltyLogitsProcessor(process_kwargs["repetition_penalty"]),
            ]
        )
        return process_kwargs, logits_processor

    @staticmethod
    def _get_warper_and_kwargs(num_beams):
        warp_kwargs = {"top_k": 10, "top_p": 0.7, "temperature": 0.7}
        logits_warper = LogitsProcessorList(
            [
Patrick von Platen's avatar
Patrick von Platen committed
158
                TemperatureLogitsWarper(warp_kwargs["temperature"]),
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
                TopKLogitsWarper(top_k=warp_kwargs["top_k"], min_tokens_to_keep=(2 if num_beams > 1 else 1)),
                TopPLogitsWarper(top_p=warp_kwargs["top_p"], min_tokens_to_keep=(2 if num_beams > 1 else 1)),
            ]
        )
        return warp_kwargs, logits_warper

    @staticmethod
    def _get_beam_scorer_and_kwargs(batch_size, max_length, num_return_sequences=1):
        beam_kwargs = {
            "early_stopping": False,
            "length_penalty": 2.0,
            "num_beams": 2,
            "num_return_sequences": num_return_sequences,
        }
        beam_scorer = BeamSearchScorer(
            batch_size=batch_size,
            num_beams=beam_kwargs["num_beams"],
            device=torch_device,
            length_penalty=beam_kwargs["length_penalty"],
            do_early_stopping=beam_kwargs["early_stopping"],
            num_beam_hyps_to_keep=num_return_sequences,
        )
        return beam_kwargs, beam_scorer

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
    @staticmethod
    def _get_diverse_beam_scorer_and_kwargs(batch_size, max_length, num_return_sequences=1):
        beam_kwargs = {
            "early_stopping": False,
            "length_penalty": 2.0,
            "num_beams": 2,
            "num_return_sequences": num_return_sequences,
            "num_beam_groups": 2,  # one beam per group
            "diversity_penalty": 2.0,
        }
        beam_scorer = BeamSearchScorer(
            batch_size=batch_size,
            num_beams=beam_kwargs["num_beams"],
            device=torch_device,
            length_penalty=beam_kwargs["length_penalty"],
            do_early_stopping=beam_kwargs["early_stopping"],
            num_beam_hyps_to_keep=num_return_sequences,
            num_beam_groups=beam_kwargs["num_beam_groups"],
        )
        return beam_kwargs, beam_scorer

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
    @staticmethod
    def _get_constrained_beam_scorer_and_kwargs(batch_size, max_length, constraints, num_return_sequences=1):
        beam_kwargs = {
            "early_stopping": False,
            "length_penalty": 2.0,
            "num_beams": num_return_sequences * 4,
            "num_return_sequences": num_return_sequences,
        }
        beam_scorer = ConstrainedBeamSearchScorer(
            batch_size=batch_size,
            constraints=constraints,
            num_beams=beam_kwargs["num_beams"],
            device=torch_device,
            length_penalty=beam_kwargs["length_penalty"],
            do_early_stopping=beam_kwargs["early_stopping"],
            num_beam_hyps_to_keep=num_return_sequences,
        )
        return beam_kwargs, beam_scorer

223
    @staticmethod
224
225
226
    def _get_encoder_outputs(
        model, input_ids, attention_mask, output_attentions=None, output_hidden_states=None, num_interleave=1
    ):
227
        encoder = model.get_encoder()
228
229
230
231
232
233
        encoder_outputs = encoder(
            input_ids,
            attention_mask=attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
        )
234
235
236
237
238
239
240
        encoder_outputs["last_hidden_state"] = encoder_outputs.last_hidden_state.repeat_interleave(
            num_interleave, dim=0
        )
        input_ids = torch.zeros_like(input_ids[:, :1]) + model._get_decoder_start_token_id()
        attention_mask = None
        return encoder_outputs, input_ids, attention_mask

241
242
243
244
245
246
247
248
249
250
251
    def _greedy_generate(
        self,
        model,
        input_ids,
        attention_mask,
        max_length,
        output_scores=False,
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
252
253
        if model.config.is_encoder_decoder:
            max_length = 4
254
        logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
255
256
257
258
259
            input_ids.shape[-1],
            eos_token_id=model.config.eos_token_id,
            forced_bos_token_id=model.config.forced_bos_token_id,
            forced_eos_token_id=model.config.forced_eos_token_id,
            max_length=max_length,
260
261
262
        )

        kwargs = {}
263
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
264
265
266
267
268
269
270
271
272
        output_generate = model.generate(
            input_ids,
            do_sample=False,
            num_beams=1,
            max_length=max_length,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            output_scores=output_scores,
            return_dict_in_generate=return_dict_in_generate,
273
            remove_invalid_values=True,
274
            **logits_process_kwargs,
275
            **model_kwargs,
276
277
278
279
280
281
282
283
284
285
286
287
288
        )

        if model.config.is_encoder_decoder:
            encoder_outputs, input_ids, attention_mask = self._get_encoder_outputs(
                model,
                input_ids,
                attention_mask,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )
            kwargs["encoder_outputs"] = encoder_outputs

        with torch.no_grad():
289
            model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
290
291
292
293
294
295
296
297
298
            output_greedy = model.greedy_search(
                input_ids,
                max_length=max_length,
                logits_processor=logits_processor,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                output_scores=output_scores,
                return_dict_in_generate=return_dict_in_generate,
                **kwargs,
299
                **model_kwargs,
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
            )
        return output_greedy, output_generate

    def _sample_generate(
        self,
        model,
        input_ids,
        attention_mask,
        max_length,
        num_return_sequences,
        logits_processor,
        logits_warper,
        logits_warper_kwargs,
        process_kwargs,
        output_scores=False,
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
        torch.manual_seed(0)
320
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
321
322
323
324
325
326
327
328
329
330
        output_generate = model.generate(
            input_ids,
            do_sample=True,
            num_beams=1,
            max_length=max_length,
            num_return_sequences=num_return_sequences,
            output_scores=output_scores,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict_in_generate=return_dict_in_generate,
331
            remove_invalid_values=True,
332
333
            **logits_warper_kwargs,
            **process_kwargs,
334
            **model_kwargs,
335
336
337
338
339
        )

        torch.manual_seed(0)
        kwargs = {}
        if model.config.is_encoder_decoder:
340
            encoder_outputs, input_ids, attention_mask = self._get_encoder_outputs(
341
342
343
344
345
346
347
348
                model,
                input_ids,
                attention_mask,
                num_interleave=num_return_sequences,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )
            kwargs["encoder_outputs"] = encoder_outputs
349
350
        elif attention_mask is not None:
            attention_mask = attention_mask.repeat_interleave(num_return_sequences, dim=0)
351

352
353
354
        # prevent flaky generation test failures
        logits_processor.append(InfNanRemoveLogitsProcessor())

355
        with torch.no_grad():
356
            model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
Vasudev Gupta's avatar
Vasudev Gupta committed
357
            output_sample = model.sample(
358
                input_ids.repeat_interleave(num_return_sequences, dim=0),
Vasudev Gupta's avatar
Vasudev Gupta committed
359
360
361
362
363
364
365
366
                max_length=max_length,
                logits_processor=logits_processor,
                logits_warper=logits_warper,
                output_scores=output_scores,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict_in_generate=return_dict_in_generate,
                **kwargs,
367
                **model_kwargs,
Vasudev Gupta's avatar
Vasudev Gupta committed
368
            )
369

370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
        return output_sample, output_generate

    def _beam_search_generate(
        self,
        model,
        input_ids,
        attention_mask,
        max_length,
        beam_scorer,
        beam_kwargs,
        logits_processor,
        logits_process_kwargs,
        output_scores=False,
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
387
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
388
389
390
391
392
393
394
395
        output_generate = model.generate(
            input_ids,
            do_sample=False,
            max_length=max_length,
            output_scores=output_scores,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict_in_generate=return_dict_in_generate,
396
            remove_invalid_values=True,
397
398
            **beam_kwargs,
            **logits_process_kwargs,
399
            **model_kwargs,
400
401
402
403
404
        )

        # beam_search does not automatically interleave `batch_size` dim for `num_beams`
        kwargs = {}
        if model.config.is_encoder_decoder:
405
            encoder_outputs, input_ids, attention_mask = self._get_encoder_outputs(
406
407
408
409
410
411
412
413
                model,
                input_ids,
                attention_mask,
                num_interleave=beam_scorer.num_beams,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )
            kwargs["encoder_outputs"] = encoder_outputs
414
415
        elif attention_mask is not None:
            attention_mask = attention_mask.repeat_interleave(beam_scorer.num_beams, dim=0)
416
417

        with torch.no_grad():
418
            model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
419
            output_beam_search = model.beam_search(
420
                input_ids.repeat_interleave(beam_scorer.num_beams, dim=0),
421
422
423
424
425
426
427
428
                beam_scorer,
                max_length=max_length,
                logits_processor=logits_processor,
                output_scores=output_scores,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict_in_generate=return_dict_in_generate,
                **kwargs,
429
                **model_kwargs,
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
            )
        return output_generate, output_beam_search

    def _beam_sample_generate(
        self,
        model,
        input_ids,
        attention_mask,
        max_length,
        num_return_sequences,
        beam_scorer,
        beam_kwargs,
        logits_warper,
        logits_warper_kwargs,
        output_scores=False,
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
        torch.manual_seed(0)
450
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
451
452
453
454
455
456
457
458
        output_generate = model.generate(
            input_ids,
            do_sample=True,
            max_length=max_length,
            output_scores=output_scores,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict_in_generate=return_dict_in_generate,
459
            remove_invalid_values=True,
460
461
            **beam_kwargs,
            **logits_warper_kwargs,
462
            **model_kwargs,
463
464
465
466
467
468
469
470
471
472
473
474
475
        )
        # beam_search does not automatically interleave `batch_size` dim for `num_beams * num_return_sequences`
        kwargs = {}
        if model.config.is_encoder_decoder:
            encoder_outputs, input_ids, attention_mask = self._get_encoder_outputs(
                model,
                input_ids,
                attention_mask,
                num_interleave=beam_scorer.num_beams * num_return_sequences,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )
            kwargs["encoder_outputs"] = encoder_outputs
476
        elif attention_mask is not None:
477
478
            attention_mask = attention_mask.repeat_interleave(beam_scorer.num_beams * num_return_sequences, dim=0)

479
480
481
482
        # prevent flaky generation test failures
        logits_processor = LogitsProcessorList()
        logits_processor.append(InfNanRemoveLogitsProcessor())

483
484
        torch.manual_seed(0)
        with torch.no_grad():
485
            model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
486
487
488
489
490
            output_beam_sample = model.beam_sample(
                input_ids.repeat_interleave(beam_scorer.num_beams * num_return_sequences, dim=0),
                beam_scorer,
                max_length=max_length,
                logits_warper=logits_warper,
491
                logits_processor=logits_processor,
492
493
494
495
496
                output_scores=output_scores,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict_in_generate=return_dict_in_generate,
                **kwargs,
497
                **model_kwargs,
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
            )

        return output_generate, output_beam_sample

    def _group_beam_search_generate(
        self,
        model,
        input_ids,
        attention_mask,
        max_length,
        beam_scorer,
        beam_kwargs,
        logits_processor,
        logits_process_kwargs,
        output_scores=False,
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
517
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
518
519
520
521
522
523
524
525
        output_generate = model.generate(
            input_ids,
            do_sample=False,
            max_length=max_length,
            output_scores=output_scores,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict_in_generate=return_dict_in_generate,
526
            remove_invalid_values=True,
527
528
            **beam_kwargs,
            **logits_process_kwargs,
529
            **model_kwargs,
530
531
532
533
534
        )

        # group_beam_search does not automatically interleave `batch_size` dim for `num_beams`
        kwargs = {}
        if model.config.is_encoder_decoder:
535
            encoder_outputs, input_ids, attention_mask = self._get_encoder_outputs(
536
537
538
539
540
541
542
543
                model,
                input_ids,
                attention_mask,
                num_interleave=beam_scorer.num_beams,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )
            kwargs["encoder_outputs"] = encoder_outputs
544
545
        elif attention_mask is not None:
            attention_mask = attention_mask.repeat_interleave(beam_scorer.num_beams, dim=0)
546
547

        with torch.no_grad():
548
            model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
549
            output_group_beam_search = model.group_beam_search(
550
                input_ids.repeat_interleave(beam_scorer.num_beams, dim=0),
551
552
553
554
555
556
557
558
                beam_scorer,
                max_length=max_length,
                logits_processor=logits_processor,
                output_scores=output_scores,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict_in_generate=return_dict_in_generate,
                **kwargs,
559
                **model_kwargs,
560
561
562
            )
        return output_generate, output_group_beam_search

563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
    def _constrained_beam_search_generate(
        self,
        model,
        input_ids,
        attention_mask,
        max_length,
        constrained_beam_scorer,
        constraints,
        beam_kwargs,
        logits_processor,
        logits_process_kwargs,
        output_scores=False,
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
579
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
580
581
582
583
584
585
586
587
588
589
590
591
        output_generate = model.generate(
            input_ids,
            do_sample=False,
            max_length=max_length,
            output_scores=output_scores,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict_in_generate=return_dict_in_generate,
            remove_invalid_values=True,
            constraints=constraints,
            **beam_kwargs,
            **logits_process_kwargs,
592
            **model_kwargs,
593
594
595
596
597
        )

        # group_beam_search does not automatically interleave `batch_size` dim for `num_beams`
        kwargs = {}
        if model.config.is_encoder_decoder:
598
            encoder_outputs, input_ids, attention_mask = self._get_encoder_outputs(
599
600
601
602
603
604
605
606
                model,
                input_ids,
                attention_mask,
                num_interleave=constrained_beam_scorer.num_beams,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )
            kwargs["encoder_outputs"] = encoder_outputs
607
608
        elif attention_mask is not None:
            attention_mask = attention_mask.repeat_interleave(constrained_beam_scorer.num_beams, dim=0)
609
610

        with torch.no_grad():
611
            model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
612
            output_group_beam_search = model.constrained_beam_search(
613
                input_ids.repeat_interleave(constrained_beam_scorer.num_beams, dim=0),
614
615
616
617
618
619
620
621
                constrained_beam_scorer,
                max_length=max_length,
                logits_processor=logits_processor,
                output_scores=output_scores,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict_in_generate=return_dict_in_generate,
                **kwargs,
622
                **model_kwargs,
623
624
625
            )
        return output_generate, output_group_beam_search

626
    def test_greedy_generate(self):
627
        # check `generate()` and `greedy_search()` are equal
628
629
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
630
631
632
633
            # test old generation output for backwards compatibility
            model = model_class(config).to(torch_device).eval()
            output_greedy, output_generate = self._greedy_generate(
                model=model, input_ids=input_ids, attention_mask=attention_mask, max_length=max_length
634
            )
635
            self.assertListEqual(output_greedy.tolist(), output_generate.tolist())
636

637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
    def test_greedy_generate_dict_outputs(self):
        for model_class in self.all_generative_model_classes:
            # disable cache
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
            config.use_cache = False
            model = model_class(config).to(torch_device).eval()
            output_greedy, output_generate = self._greedy_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_length=max_length,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )
653
654

            if model.config.is_encoder_decoder:
655
656
657
658
659
                self.assertIsInstance(output_greedy, GreedySearchEncoderDecoderOutput)
                self.assertIsInstance(output_generate, GreedySearchEncoderDecoderOutput)
            else:
                self.assertIsInstance(output_greedy, GreedySearchDecoderOnlyOutput)
                self.assertIsInstance(output_generate, GreedySearchDecoderOnlyOutput)
660

661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
            self.assertListEqual(output_generate.sequences.tolist(), output_greedy.sequences.tolist())

            for output in (output_greedy, output_generate):
                self._check_outputs(output, input_ids, model.config)

    def test_greedy_generate_dict_outputs_use_cache(self):
        for model_class in self.all_generative_model_classes:
            # enable cache
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()

            if not hasattr(config, "use_cache"):
                # only relevant if model has "use_cache"
                return

            config.use_cache = True
676
            config.is_decoder = True
677
678
679
680
            model = model_class(config).to(torch_device).eval()
            output_greedy, output_generate = self._greedy_generate(
                model=model,
                input_ids=input_ids,
681
682
                attention_mask=attention_mask,
                max_length=max_length,
683
684
685
686
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
687
            )
688

689
690
691
692
            self.assertListEqual(output_generate.sequences.tolist(), output_greedy.sequences.tolist())

            for output in (output_greedy, output_generate):
                self._check_outputs(output, input_ids, model.config, use_cache=True)
693
694
695
696

    def test_sample_generate(self):
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
697
            model = model_class(config).to(torch_device).eval()
698
699
700
701

            if model.config.is_encoder_decoder:
                max_length = 4

702
703
704
705
706
707
708
709
710
            process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
                input_ids.shape[-1],
                model.config.eos_token_id,
                forced_bos_token_id=model.config.forced_bos_token_id,
                forced_eos_token_id=model.config.forced_eos_token_id,
                max_length=max_length,
            )
            logits_warper_kwargs, logits_warper = self._get_warper_and_kwargs(num_beams=1)

711
712
713
714
715
            # check `generate()` and `sample()` are equal
            output_sample, output_generate = self._sample_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
716
                max_length=max_length,
717
718
719
720
721
722
723
724
725
726
727
728
                num_return_sequences=1,
                logits_processor=logits_processor,
                logits_warper=logits_warper,
                logits_warper_kwargs=logits_warper_kwargs,
                process_kwargs=process_kwargs,
            )
            self.assertListEqual(output_sample.tolist(), output_generate.tolist())

            # check `generate()` and `sample()` yield equal results for `num_return_sequences`
            output_sample, output_generate = self._sample_generate(
                model=model,
                input_ids=input_ids,
729
                attention_mask=attention_mask,
730
731
732
733
734
735
                max_length=max_length,
                num_return_sequences=3,
                logits_processor=logits_processor,
                logits_warper=logits_warper,
                logits_warper_kwargs=logits_warper_kwargs,
                process_kwargs=process_kwargs,
736
            )
737
            self.assertListEqual(output_sample.tolist(), output_generate.tolist())
738

739
740
741
742
743
744
    def test_sample_generate_dict_output(self):
        for model_class in self.all_generative_model_classes:
            # disable cache
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
            config.use_cache = False
            model = model_class(config).to(torch_device).eval()
745
746
747
            if model.config.is_encoder_decoder:
                max_length = 4

748
            process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
749
750
751
752
753
                input_ids.shape[-1],
                model.config.eos_token_id,
                forced_bos_token_id=model.config.forced_bos_token_id,
                forced_eos_token_id=model.config.forced_eos_token_id,
                max_length=max_length,
754
755
            )
            logits_warper_kwargs, logits_warper = self._get_warper_and_kwargs(num_beams=1)
756

757
758
759
            output_sample, output_generate = self._sample_generate(
                model=model,
                input_ids=input_ids,
760
                attention_mask=attention_mask,
761
762
763
764
765
766
767
768
769
770
                max_length=max_length,
                num_return_sequences=2,
                logits_processor=logits_processor,
                logits_warper=logits_warper,
                logits_warper_kwargs=logits_warper_kwargs,
                process_kwargs=process_kwargs,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
771
772
773
            )

            if model.config.is_encoder_decoder:
774
775
                self.assertIsInstance(output_sample, SampleEncoderDecoderOutput)
                self.assertIsInstance(output_generate, SampleEncoderDecoderOutput)
776
            else:
777
778
779
780
781
782
783
                self.assertIsInstance(output_sample, SampleDecoderOnlyOutput)
                self.assertIsInstance(output_generate, SampleDecoderOnlyOutput)

            self.assertListEqual(output_generate.sequences.tolist(), output_sample.sequences.tolist())

            for output in (output_sample, output_generate):
                self._check_outputs(output, input_ids, model.config, num_return_sequences=2)
784
785
786
787

    def test_beam_search_generate(self):
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
788
789
790
791
792

            # It is important set set the eos_token_id to None to ensure that no sequences
            # shorter than `max_length` can be generated which could lead to flaky circle ci
            # failures if the top `num_return_sequences` beams are all shorter than the longest beam
            config.eos_token_id = None
793
            config.forced_eos_token_id = None
794

795
            model = model_class(config).to(torch_device).eval()
796
797
            if model.config.is_encoder_decoder:
                max_length = 4
798
799

            logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
800
801
802
803
804
                input_ids.shape[-1],
                config.eos_token_id,
                config.forced_bos_token_id,
                config.forced_eos_token_id,
                max_length,
805
806
            )
            beam_kwargs, beam_scorer = self._get_beam_scorer_and_kwargs(input_ids.shape[0], max_length)
807
808
809
810
811

            # check `generate()` and `beam_search()` are equal
            output_generate, output_beam_search = self._beam_search_generate(
                model=model,
                input_ids=input_ids,
812
813
                attention_mask=attention_mask,
                max_length=max_length,
814
815
816
817
                beam_scorer=beam_scorer,
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
                logits_processor=logits_processor,
818
            )
819

820
            self.assertListEqual(output_generate.tolist(), output_beam_search.tolist())
821
822
823
824
825
826
827
828
829

            # check `generate()` and `beam_search()` are equal for `num_return_sequences`
            num_return_sequences = 2
            if model.config.is_encoder_decoder:
                max_length = 4
            beam_kwargs, beam_scorer = self._get_beam_scorer_and_kwargs(
                input_ids.shape[0], max_length, num_return_sequences=num_return_sequences
            )

830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
            output_generate, output_beam_search = self._beam_search_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_length=max_length,
                beam_scorer=beam_scorer,
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
                logits_processor=logits_processor,
            )
            self.assertListEqual(output_generate.tolist(), output_beam_search.tolist())

    def test_beam_search_generate_dict_output(self):
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
845
846

            # disable cache
847
            config.use_cache = False
848
849
850
851
852

            # It is important set set the eos_token_id to None to ensure that no sequences
            # shorter than `max_length` can be generated which could lead to flaky circle ci
            # failures if the top `num_return_sequences` beams are all shorter than the longest beam
            config.eos_token_id = None
853
            config.forced_eos_token_id = None
854

855
856
857
            model = model_class(config).to(torch_device).eval()
            if model.config.is_encoder_decoder:
                max_length = 4
858
859
860
861
862
863
864
865

            logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
                input_ids.shape[-1],
                config.eos_token_id,
                config.forced_bos_token_id,
                config.forced_eos_token_id,
                max_length,
            )
866
867
868
869
            beam_kwargs, beam_scorer = self._get_beam_scorer_and_kwargs(input_ids.shape[0], max_length)
            output_generate, output_beam_search = self._beam_search_generate(
                model=model,
                input_ids=input_ids,
870
871
                attention_mask=attention_mask,
                max_length=max_length,
872
873
874
875
876
877
878
879
                beam_scorer=beam_scorer,
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
                logits_processor=logits_processor,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
880
881
            )
            if model.config.is_encoder_decoder:
882
883
                self.assertIsInstance(output_beam_search, BeamSearchEncoderDecoderOutput)
                self.assertIsInstance(output_generate, BeamSearchEncoderDecoderOutput)
884
            else:
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
                self.assertIsInstance(output_beam_search, BeamSearchDecoderOnlyOutput)
                self.assertIsInstance(output_generate, BeamSearchDecoderOnlyOutput)

            self.assertListEqual(output_generate.sequences.tolist(), output_beam_search.sequences.tolist())
            self.assertTrue(
                torch.allclose(output_generate["sequences_scores"], output_beam_search["sequences_scores"], atol=1e-3)
            )
            self.assertTrue(output_generate["sequences_scores"].shape == (output_generate["sequences"].shape[0],))
            self.assertTrue((output_generate["sequences_scores"] < 0).all().item())

            for output in (output_beam_search, output_generate):
                self._check_outputs(output, input_ids, model.config, num_return_sequences=beam_scorer.num_beams)

    def test_beam_search_generate_dict_outputs_use_cache(self):
        for model_class in self.all_generative_model_classes:
            # enable cache
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()

903
904
905
906
            # It is important set set the eos_token_id to None to ensure that no sequences
            # shorter than `max_length` can be generated which could lead to flaky circle ci
            # failures if the top `num_return_sequences` beams are all shorter than the longest beam
            config.eos_token_id = None
907
            config.forced_eos_token_id = None
908

909
910
911
912
913
            if not hasattr(config, "use_cache"):
                # only relevant if model has "use_cache"
                return

            model = model_class(config).to(torch_device).eval()
914
915
            if model.config.is_encoder_decoder:
                max_length = 4
916
917

            logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
918
919
920
921
922
                input_ids.shape[-1],
                config.eos_token_id,
                config.forced_bos_token_id,
                config.forced_eos_token_id,
                max_length,
923
924
925
926
927
            )

            beam_kwargs, beam_scorer = self._get_beam_scorer_and_kwargs(input_ids.shape[0], max_length)

            config.use_cache = True
928
            config.is_decoder = True
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
            model = model_class(config).to(torch_device).eval()
            output_beam, output_generate = self._beam_search_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_length=max_length,
                beam_scorer=beam_scorer,
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
                logits_processor=logits_processor,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )

            self.assertListEqual(output_generate.sequences.tolist(), output_beam.sequences.tolist())

            for output in (output_beam, output_generate):
                self._check_outputs(
                    output, input_ids, model.config, use_cache=True, num_return_sequences=beam_scorer.num_beams
950
951
952
953
954
                )

    def test_beam_sample_generate(self):
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
955
956
957
958
959

            # It is important set set the eos_token_id to None to ensure that no sequences
            # shorter than `max_length` can be generated which could lead to flaky circle ci
            # failures if the top `num_return_sequences` beams are all shorter than the longest beam
            config.eos_token_id = None
960
            config.forced_eos_token_id = None
961

962
963
            logits_warper_kwargs, logits_warper = self._get_warper_and_kwargs(num_beams=1)

964
            model = model_class(config).to(torch_device).eval()
965
966
967
968
969
970
971
972
973
974

            # check `generate()` and `beam_search()` are equal
            # change `num_return_sequences = 2` but not for `beam_scorer`
            num_return_sequences = 2
            if model.config.is_encoder_decoder:
                max_length = 4
            beam_kwargs, beam_scorer = self._get_beam_scorer_and_kwargs(
                input_ids.shape[0] * num_return_sequences, max_length
            )
            beam_kwargs["num_return_sequences"] = num_return_sequences
975
976
977
978

            output_generate, output_beam_sample = self._beam_sample_generate(
                model=model,
                input_ids=input_ids,
979
980
                attention_mask=attention_mask,
                max_length=max_length,
981
982
983
984
985
                num_return_sequences=num_return_sequences,
                beam_scorer=beam_scorer,
                beam_kwargs=beam_kwargs,
                logits_warper=logits_warper,
                logits_warper_kwargs=logits_warper_kwargs,
986
            )
987
988
989
990
991
            self.assertListEqual(output_generate.tolist(), output_beam_sample.tolist())

    def test_beam_sample_generate_dict_output(self):
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
992
993

            # disable cache
994
            config.use_cache = False
995
996
997
998
999

            # It is important set set the eos_token_id to None to ensure that no sequences
            # shorter than `max_length` can be generated which could lead to flaky circle ci
            # failures if the top `num_return_sequences` beams are all shorter than the longest beam
            config.eos_token_id = None
1000
            config.forced_eos_token_id = None
1001

1002
1003
1004
1005
            model = model_class(config).to(torch_device).eval()
            logits_warper_kwargs, logits_warper = self._get_warper_and_kwargs(num_beams=1)

            num_return_sequences = 2
1006
            if model.config.is_encoder_decoder:
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
                max_length = 4
            beam_kwargs, beam_scorer = self._get_beam_scorer_and_kwargs(
                input_ids.shape[0] * num_return_sequences, max_length
            )
            beam_kwargs["num_return_sequences"] = num_return_sequences

            output_beam_sample, output_generate = self._beam_sample_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_length=max_length,
                num_return_sequences=num_return_sequences,
                beam_scorer=beam_scorer,
                beam_kwargs=beam_kwargs,
                logits_warper=logits_warper,
                logits_warper_kwargs=logits_warper_kwargs,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )

            if model.config.is_encoder_decoder:
1030
1031
                self.assertIsInstance(output_beam_sample, BeamSampleEncoderDecoderOutput)
                self.assertIsInstance(output_generate, BeamSampleEncoderDecoderOutput)
1032
            else:
1033
1034
                self.assertIsInstance(output_beam_sample, BeamSampleDecoderOnlyOutput)
                self.assertIsInstance(output_generate, BeamSampleDecoderOnlyOutput)
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045

            self.assertListEqual(output_generate.sequences.tolist(), output_beam_sample.sequences.tolist())
            self.assertTrue(
                torch.allclose(output_generate["sequences_scores"], output_beam_sample["sequences_scores"], atol=1e-3)
            )
            self.assertTrue(output_generate["sequences_scores"].shape == (output_generate["sequences"].shape[0],))
            self.assertTrue((output_generate["sequences_scores"] < 0).all().item())

            for output in (output_beam_sample, output_generate):
                self._check_outputs(
                    output, input_ids, model.config, num_return_sequences=num_return_sequences * beam_scorer.num_beams
1046
1047
                )

1048
1049
    def test_generate_without_input_ids(self):
        config, _, _, max_length = self._get_input_ids_and_config()
1050

1051
1052
1053
        # if no bos token id => cannot generate from None
        if config.bos_token_id is None:
            return
1054

1055
1056
1057
        for model_class in self.all_generative_model_classes:
            model = model_class(config).to(torch_device)
            model.eval()
1058

1059
            output_ids_generate = model.generate(do_sample=False, max_length=max_length, remove_invalid_values=True)
1060
            self.assertIsNotNone(output_ids_generate)
1061

1062
1063
1064
1065
    def test_group_beam_search_generate(self):
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()

1066
1067
1068
1069
            # It is important set set the eos_token_id to None to ensure that no sequences
            # shorter than `max_length` can be generated which could lead to flaky circle ci
            # failures if the top `num_return_sequences` beams are all shorter than the longest beam
            config.eos_token_id = None
1070
1071
1072
1073
1074
            config.forced_eos_token_id = None

            model = model_class(config).to(torch_device).eval()
            if model.config.is_encoder_decoder:
                max_length = 4
1075

1076
            logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
1077
1078
1079
1080
1081
1082
                input_ids.shape[-1],
                config.eos_token_id,
                config.forced_bos_token_id,
                config.forced_eos_token_id,
                max_length,
                diversity_penalty=2.0,
1083
1084
1085
1086
            )

            # check `generate()` and `group_beam_search()` are equal
            beam_kwargs, beam_scorer = self._get_diverse_beam_scorer_and_kwargs(input_ids.shape[0], max_length)
1087
1088
1089
            output_generate, output_group_beam_search = self._group_beam_search_generate(
                model=model,
                input_ids=input_ids,
1090
1091
                attention_mask=attention_mask,
                max_length=max_length,
1092
1093
1094
1095
                beam_scorer=beam_scorer,
                beam_kwargs=beam_kwargs,
                logits_processor=logits_processor,
                logits_process_kwargs=logits_process_kwargs,
1096
            )
1097
            self.assertListEqual(output_generate.tolist(), output_group_beam_search.tolist())
1098
1099
1100
1101
1102
1103
1104
1105

            # check `generate()` and `group_beam_search()` are equal for `num_return_sequences`
            num_return_sequences = 2
            if model.config.is_encoder_decoder:
                max_length = 4
            beam_kwargs, beam_scorer = self._get_diverse_beam_scorer_and_kwargs(
                input_ids.shape[0], max_length, num_return_sequences=num_return_sequences
            )
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
            output_generate, output_group_beam_search = self._group_beam_search_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_length=max_length,
                beam_scorer=beam_scorer,
                beam_kwargs=beam_kwargs,
                logits_processor=logits_processor,
                logits_process_kwargs=logits_process_kwargs,
            )
            self.assertListEqual(output_generate.tolist(), output_group_beam_search.tolist())
1117

1118
1119
1120
1121
    def test_group_beam_search_generate_dict_output(self):
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
            config.use_cache = False
1122
1123
1124
1125
1126

            # It is important set set the eos_token_id to None to ensure that no sequences
            # shorter than `max_length` can be generated which could lead to flaky circle ci
            # failures if the top `num_return_sequences` beams are all shorter than the longest beam
            config.eos_token_id = None
1127
            config.forced_eos_token_id = None
1128

1129
            model = model_class(config).to(torch_device).eval()
1130
1131
            if model.config.is_encoder_decoder:
                max_length = 4
1132
1133

            logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
1134
1135
1136
1137
1138
1139
                input_ids.shape[-1],
                config.eos_token_id,
                config.forced_bos_token_id,
                config.forced_eos_token_id,
                max_length,
                diversity_penalty=2.0,
1140
1141
1142
1143
1144
1145
1146
1147
1148
            )

            num_return_sequences = 1
            beam_kwargs, beam_scorer = self._get_diverse_beam_scorer_and_kwargs(
                input_ids.shape[0], max_length, num_return_sequences=num_return_sequences
            )
            output_generate, output_group_beam_search = self._group_beam_search_generate(
                model=model,
                input_ids=input_ids,
1149
1150
                attention_mask=attention_mask,
                max_length=max_length,
1151
1152
1153
1154
1155
1156
1157
1158
                beam_scorer=beam_scorer,
                beam_kwargs=beam_kwargs,
                logits_processor=logits_processor,
                logits_process_kwargs=logits_process_kwargs,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
1159
1160
            )
            if model.config.is_encoder_decoder:
1161
1162
                self.assertIsInstance(output_group_beam_search, BeamSearchEncoderDecoderOutput)
                self.assertIsInstance(output_generate, BeamSearchEncoderDecoderOutput)
1163
            else:
1164
1165
1166
1167
1168
1169
1170
                self.assertIsInstance(output_group_beam_search, BeamSearchDecoderOnlyOutput)
                self.assertIsInstance(output_generate, BeamSearchDecoderOnlyOutput)

            self.assertListEqual(output_generate.sequences.tolist(), output_group_beam_search.sequences.tolist())
            self.assertTrue(
                torch.allclose(
                    output_generate["sequences_scores"], output_group_beam_search["sequences_scores"], atol=1e-3
1171
                )
1172
1173
1174
1175
1176
1177
1178
1179
1180
            )
            self.assertTrue(output_generate["sequences_scores"].shape == (output_generate["sequences"].shape[0],))
            self.assertTrue((output_generate["sequences_scores"] < 0).all().item())

            for output in (output_group_beam_search, output_generate):
                self._check_outputs(
                    output, input_ids, model.config, num_return_sequences=num_return_sequences * beam_scorer.num_beams
                )

1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
    def test_constrained_beam_search_generate(self):
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()

            # It is important set set the eos_token_id to None to ensure that no sequences
            # shorter than `max_length` can be generated which could lead to flaky circle ci
            # failures if the top `num_return_sequences` beams are all shorter than the longest beam
            config.eos_token_id = None
            config.forced_eos_token_id = None

            model = model_class(config).to(torch_device).eval()
            max_length = 20

            logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
                input_ids.shape[-1],
                config.eos_token_id,
                config.forced_bos_token_id,
                config.forced_eos_token_id,
                max_length,
            )

            # check `generate()` and `constrained_beam_search()` are equal
            # Sample constraints
            if not input_ids.dtype == torch.float32:
                min_id = torch.min(input_ids) + 3
                max_id = torch.max(input_ids)
            else:
                # otherwise this throws an error for Speech2TextModel since its inputs are floating points
                min_id = 3
                max_id = 100

1212
            force_tokens = torch.randint(min_id, max_id, (1, 2)).tolist()[0]
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
            constraints = [
                PhrasalConstraint(force_tokens),
            ]

            beam_kwargs, beam_scorer = self._get_constrained_beam_scorer_and_kwargs(
                input_ids.shape[0], max_length, constraints, num_return_sequences=1
            )
            output_generate, output_beam_search = self._constrained_beam_search_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_length=max_length,
                constrained_beam_scorer=beam_scorer,
                constraints=constraints,
                beam_kwargs=beam_kwargs,
                logits_processor=logits_processor,
                logits_process_kwargs=logits_process_kwargs,
            )
            self.assertListEqual(output_generate.tolist(), output_beam_search.tolist())
            for generation_output in output_generate:
                self._check_sequence_inside_sequence(force_tokens, generation_output)

            # check `generate()` and `constrained_beam_search()` are equal for `num_return_sequences`
            # Sample constraints
1237
            force_tokens = torch.randint(min_id, max_id, (1, 2)).tolist()[0]
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
            constraints = [
                PhrasalConstraint(force_tokens),
            ]

            num_return_sequences = 2
            max_length = 20

            beam_kwargs, beam_scorer = self._get_constrained_beam_scorer_and_kwargs(
                input_ids.shape[0], max_length, constraints, num_return_sequences=num_return_sequences
            )

            output_generate, output_beam_search = self._constrained_beam_search_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_length=max_length,
                constrained_beam_scorer=beam_scorer,
                constraints=constraints,
                beam_kwargs=beam_kwargs,
                logits_processor=logits_processor,
                logits_process_kwargs=logits_process_kwargs,
            )
            self.assertListEqual(output_generate.tolist(), output_beam_search.tolist())

            for generation_output in output_generate:
                self._check_sequence_inside_sequence(force_tokens, generation_output)

    def test_constrained_beam_search_generate_dict_output(self):
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()

            # disable cache
            config.use_cache = False

            # It is important set set the eos_token_id to None to ensure that no sequences
            # shorter than `max_length` can be generated which could lead to flaky circle ci
            # failures if the top `num_return_sequences` beams are all shorter than the longest beam
            config.eos_token_id = None
            config.forced_eos_token_id = None

            model = model_class(config).to(torch_device).eval()
            if model.config.is_encoder_decoder:
                max_length = 20

            logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
                input_ids.shape[-1],
                config.eos_token_id,
                config.forced_bos_token_id,
                config.forced_eos_token_id,
                max_length,
            )

            # Sample constraints
            if not input_ids.dtype == torch.float32:
                min_id = torch.min(input_ids) + 3
                max_id = torch.max(input_ids)
            else:
                # otherwise this throws an error for Speech2TextModel since its inputs are floating points
                min_id = 3
                max_id = 100
1298
            force_tokens = torch.randint(min_id, max_id, (1, 2)).tolist()[0]
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
            constraints = [
                PhrasalConstraint(force_tokens),
            ]

            beam_kwargs, beam_scorer = self._get_constrained_beam_scorer_and_kwargs(
                input_ids.shape[0], max_length, constraints, num_return_sequences=1
            )
            output_generate, output_beam_search = self._constrained_beam_search_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_length=max_length,
                constrained_beam_scorer=beam_scorer,
                constraints=constraints,
                beam_kwargs=beam_kwargs,
                logits_processor=logits_processor,
                logits_process_kwargs=logits_process_kwargs,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )

            if model.config.is_encoder_decoder:
                self.assertIsInstance(output_beam_search, BeamSearchEncoderDecoderOutput)
                self.assertIsInstance(output_generate, BeamSearchEncoderDecoderOutput)
            else:
                self.assertIsInstance(output_beam_search, BeamSearchDecoderOnlyOutput)
                self.assertIsInstance(output_generate, BeamSearchDecoderOnlyOutput)

            self.assertListEqual(output_generate.sequences.tolist(), output_beam_search.sequences.tolist())
            self.assertTrue(
                torch.allclose(output_generate["sequences_scores"], output_beam_search["sequences_scores"], atol=1e-3)
            )
            self.assertTrue(output_generate["sequences_scores"].shape == (output_generate["sequences"].shape[0],))
            self.assertTrue((output_generate["sequences_scores"] < 0).all().item())

            for output in (output_beam_search, output_generate):
                self._check_outputs(output, input_ids, model.config, num_return_sequences=beam_scorer.num_beams)

1339
1340
1341
1342
1343
    def test_generate_with_head_masking(self):
        """Test designed for encoder-decoder models to ensure the attention head masking is used."""
        attention_names = ["encoder_attentions", "decoder_attentions", "cross_attentions"]
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
1344
            model = model_class(config).to(torch_device)
1345
1346
1347
1348
1349
            # We want to test only encoder-decoder models
            if not config.is_encoder_decoder:
                continue

            head_masking = {
1350
1351
1352
1353
1354
1355
1356
                "head_mask": torch.zeros(config.encoder_layers, config.encoder_attention_heads, device=torch_device),
                "decoder_head_mask": torch.zeros(
                    config.decoder_layers, config.decoder_attention_heads, device=torch_device
                ),
                "cross_attn_head_mask": torch.zeros(
                    config.decoder_layers, config.decoder_attention_heads, device=torch_device
                ),
1357
1358
1359
1360
            }

            signature = inspect.signature(model.forward)
            # We want to test only models where encoder/decoder head masking is implemented
1361
            if not set(head_masking.keys()) < set([*signature.parameters.keys()]):
1362
1363
1364
1365
1366
                continue

            for attn_name, (name, mask) in zip(attention_names, head_masking.items()):
                out = model.generate(
                    input_ids,
1367
                    attention_mask=attention_mask,
1368
1369
1370
                    num_beams=1,
                    output_attentions=True,
                    return_dict_in_generate=True,
1371
                    remove_invalid_values=True,
1372
1373
1374
1375
1376
1377
                    **{name: mask},
                )
                # We check the state of decoder_attentions and cross_attentions just from the last step
                attn_weights = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
                self.assertEqual(sum([w.sum().item() for w in attn_weights]), 0.0)

1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
    def _check_outputs(self, output, input_ids, config, use_cache=False, num_return_sequences=1):
        batch_size, seq_length = input_ids.shape
        num_sequences_in_output = batch_size * num_return_sequences
        gen_len = (
            output.sequences.shape[-1] - 1 if config.is_encoder_decoder else output.sequences.shape[-1] - seq_length
        )

        # scores
        self._check_scores(num_sequences_in_output, output.scores, length=gen_len, config=config)

        # Attentions
        if config.is_encoder_decoder:
            # encoder
1391
            self._check_encoder_attention_for_generate(output.encoder_attentions, batch_size, config, seq_length)
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
            # decoder
            self._check_attentions_for_generate(
                num_sequences_in_output,
                output.decoder_attentions,
                min_length=1,
                max_length=output.sequences.shape[-1],
                config=config,
                use_cache=use_cache,
            )
        else:
            # if use_cache first input is equal to no use_cache, so skip here
            attentions = output.attentions if not use_cache else output.attentions[1:]
            min_length = seq_length if not use_cache else seq_length + 1
            self._check_attentions_for_generate(
                num_sequences_in_output,
                attentions=attentions,
                min_length=min_length,
                max_length=output.sequences.shape[-1],
                config=config,
                use_cache=use_cache,
            )

        # Hidden States
        if config.is_encoder_decoder:
            # encoder
1417
1418
            self._check_encoder_hidden_states_for_generate(
                output.encoder_hidden_states, batch_size, config, seq_length
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
            )

            # decoder
            self._check_hidden_states_for_generate(
                num_sequences_in_output,
                output.decoder_hidden_states,
                min_length=1,
                max_length=output.sequences.shape[-1],
                config=config,
                use_cache=use_cache,
            )
        else:
            # if use_cache first input is equal to no use_cache, so skip here
            hidden_states = output.hidden_states if not use_cache else output.hidden_states[1:]
            min_length = seq_length if not use_cache else seq_length + 1
            self._check_hidden_states_for_generate(
                num_sequences_in_output,
                hidden_states,
                min_length=min_length,
                max_length=output.sequences.shape[-1],
                config=config,
                use_cache=use_cache,
            )

    def _check_scores(self, batch_size, scores, length, config):
        expected_shape = (batch_size, config.vocab_size)
        self.assertIsInstance(scores, tuple)
        self.assertEqual(len(scores), length)
        self.assertListEqual([iter_scores.shape for iter_scores in scores], [expected_shape] * len(scores))

    def _check_attentions_for_generate(
        self, batch_size, attentions, min_length, max_length, config, use_cache=False, num_beam_groups=1
    ):
        self.assertIsInstance(attentions, tuple)
        self.assertListEqual(
            [isinstance(iter_attentions, tuple) for iter_attentions in attentions], [True] * len(attentions)
        )
        self.assertEqual(len(attentions), (max_length - min_length) * num_beam_groups)

        for idx, iter_attentions in enumerate(attentions):
            tgt_len = min_length + idx if not use_cache else 1
            src_len = min_length + idx

            expected_shape = (
                batch_size * num_beam_groups,
                config.num_attention_heads,
                tgt_len,
                src_len,
            )
            # check attn size
            self.assertListEqual(
                [layer_attention.shape for layer_attention in iter_attentions], [expected_shape] * len(iter_attentions)
            )

1473
1474
1475
1476
1477
1478
1479
1480
    def _check_encoder_attention_for_generate(self, attentions, batch_size, config, seq_length):
        encoder_expected_shape = (batch_size, config.num_attention_heads, seq_length, seq_length)
        self.assertIsInstance(attentions, tuple)
        self.assertListEqual(
            [layer_attentions.shape for layer_attentions in attentions],
            [encoder_expected_shape] * len(attentions),
        )

1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
    def _check_hidden_states_for_generate(
        self, batch_size, hidden_states, min_length, max_length, config, use_cache=False, num_beam_groups=1
    ):
        self.assertIsInstance(hidden_states, tuple)
        self.assertListEqual(
            [isinstance(iter_hidden_states, tuple) for iter_hidden_states in hidden_states],
            [True] * len(hidden_states),
        )
        self.assertEqual(len(hidden_states), (max_length - min_length) * num_beam_groups)

        for idx, iter_hidden_states in enumerate(hidden_states):
            seq_len = min_length + idx if not use_cache else 1
            expected_shape = (batch_size * num_beam_groups, seq_len, config.hidden_size)
            # check hidden size
            self.assertListEqual(
                [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states],
                [expected_shape] * len(iter_hidden_states),
            )
1499

1500
1501
1502
1503
1504
1505
1506
1507
    def _check_encoder_hidden_states_for_generate(self, hidden_states, batch_size, config, seq_length):
        encoder_expected_shape = (batch_size, seq_length, config.hidden_size)
        self.assertIsInstance(hidden_states, tuple)
        self.assertListEqual(
            [layer_hidden_states.shape for layer_hidden_states in hidden_states],
            [encoder_expected_shape] * len(hidden_states),
        )

1508
    def _check_sequence_inside_sequence(self, tensor_1, tensor_2):
1509
        # check if tensor_1 inside tensor_2 or tensor_2 inside tensor_1.
1510
1511
        # set to same device. we don't care what device.

1512
1513
1514
1515
1516
1517
        if not isinstance(tensor_1, list):
            tensor_1 = tensor_1.cpu().tolist()
        if not isinstance(tensor_2, list):
            tensor_2 = tensor_2.cpu().tolist()

        in_order = len(tensor_1) <= len(tensor_2)
1518
1519
1520
1521
        longer = tensor_2 if in_order else tensor_1
        shorter = tensor_1 if in_order else tensor_2

        flag = False
1522
1523
        chunk_size = len(shorter)
        for chunk_idx in range(len(longer) - chunk_size + 1):
1524
            subseq = longer[chunk_idx : chunk_idx + chunk_size]
1525
            if subseq == shorter:
1526
1527
1528
1529
1530
                flag = True
                break

        self.assertTrue(flag)

1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634

@require_torch
class UtilsFunctionsTest(unittest.TestCase):

    # tests whether the top_k_top_p function behaves as expected
    def test_top_k_top_p_filtering(self):
        logits = torch.tensor(
            [
                [
                    8.2220991,  # 3rd highest value; idx. 0
                    -0.5620044,
                    5.23229752,
                    4.0386393,
                    -6.8798378,
                    -0.54785802,
                    -3.2012153,
                    2.92777176,
                    1.88171953,
                    7.35341276,
                    8.43207833,  # 2nd highest value; idx. 10
                    -9.85711836,
                    -5.96209236,
                    -1.13039161,
                    -7.1115294,
                    -0.8369633,
                    -5.3186408,
                    7.06427407,
                    0.81369344,
                    -0.82023817,
                    -5.9179796,
                    0.58813443,
                    -6.99778438,
                    4.71551189,
                    -0.18771637,
                    7.44020759,  # 4th highest value; idx. 25
                    9.38450987,  # 1st highest value; idx. 26
                    2.12662941,
                    -9.32562038,
                    2.35652522,
                ],  # cummulative prob of 4 highest values <= 0.6
                [
                    0.58425518,
                    4.53139238,
                    -5.57510464,
                    -6.28030699,
                    -7.19529503,
                    -4.02122551,
                    1.39337037,
                    -6.06707057,
                    1.59480517,
                    -9.643119,
                    0.03907799,
                    0.67231762,
                    -8.88206726,
                    6.27115922,  # 4th highest value; idx. 13
                    2.28520723,
                    4.82767506,
                    4.30421368,
                    8.8275313,  # 2nd highest value; idx. 17
                    5.44029958,
                    -4.4735794,
                    7.38579536,  # 3rd highest value; idx. 20
                    -2.91051663,
                    2.61946077,
                    -2.5674762,
                    -9.48959302,
                    -4.02922645,
                    -1.35416918,
                    9.67702323,  # 1st highest value; idx. 27
                    -5.89478553,
                    1.85370467,
                ],  # cummulative prob of 4 highest values <= 0.6
            ],
            dtype=torch.float,
            device=torch_device,
        )

        non_inf_expected_idx = torch.tensor(
            [[0, 0], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 20], [1, 27]],
            dtype=torch.long,
            device=torch_device,
        )  # expected non filtered idx as noted above

        non_inf_expected_output = torch.tensor(
            [
                8.2221,
                8.4321,
                7.4402,
                9.3845,
                6.2712,
                8.8275,
                7.3858,
                9.6770,
            ],  # expected non filtered values as noted above
            dtype=torch.float,
            device=torch_device,
        )

        output = top_k_top_p_filtering(logits, top_k=10, top_p=0.6, min_tokens_to_keep=4)
        non_inf_output = output[output != -float("inf")].to(device=torch_device)
        non_inf_idx = (output != -float("inf")).nonzero().to(device=torch_device)

        self.assertTrue(torch.allclose(non_inf_expected_output, non_inf_output, atol=1e-12))
        self.assertTrue(torch.all(torch.eq(non_inf_expected_idx, non_inf_idx)))
1635

1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
    # tests whether the function uses filter_value instead of default -inf
    def test_top_k_top_p_filtering_with_filter_value(self):
        logits = torch.tensor(
            [
                [
                    1,
                    1,
                    1,
                    0.99,  # get filtered by top-p filtering
                    0.98,  # get filtered by top-k filtering
                ]
            ],
            dtype=torch.float,
            device=torch_device,
        )

        expected_output = torch.tensor(
            [[1, 1, 1, 0, 0]],
            dtype=torch.float,
            device=torch_device,
        )

        output = top_k_top_p_filtering(logits, top_k=4, top_p=0.5, filter_value=0.0)

        self.assertTrue(torch.allclose(expected_output, output, atol=1e-12))

1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676

@require_torch
class GenerationIntegrationTests(unittest.TestCase):
    @slow
    def test_diverse_beam_search(self):
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood.
        The celebrity couple announced the arrival of their son, Silas Randall Timberlake, in statements to People.
        "Silas was the middle name of Timberlake's maternal grandfather Bill Bomar, who died in 2012, while Randall is the musician's own middle name, as well as his father's first," People reports.
        The couple announced the pregnancy in January, with an Instagram post. It is the first baby for both."""

        bart_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
        bart_model = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn").to(torch_device)
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        outputs = bart_model.generate(
1677
1678
1679
1680
1681
1682
            input_ids,
            num_beams=4,
            num_return_sequences=2,
            num_beam_groups=4,
            diversity_penalty=2.0,
            remove_invalid_values=True,
1683
1684
1685
1686
1687
1688
1689
        )

        generated_text = bart_tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
Sylvain Gugger's avatar
Sylvain Gugger committed
1690
1691
1692
1693
1694
1695
                "The couple announced the birth of their son, Silas Randall Timberlake, in a statement. Silas was the"
                " middle name of Timberlake's maternal grandfather Bill Bomar. Randall is the musician's own middle"
                " name, as well as his father's first. It is the first baby for both of them.",
                "Justin Timberlake and Jessica Biel have a son. The baby is named Silas Randall Timberlake. It is the"
                " first child for both. The couple announced the pregnancy in January. The name Silas is the middle"
                " name of Timberlake's maternal grandfather. It's also his own middle name.",
1696
1697
            ],
        )
1698

1699
1700
    @slow
    def test_contrastive_search_bart(self):
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
        article = (
            " New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County, New York. A"
            " year later, she got married again in Westchester County, but to a different man and without divorcing"
            " her first husband.  Only 18 days after that marriage, she got hitched yet again. Then, Barrientos"
            ' declared "I do" five more times, sometimes only within two weeks of each other. In 2010, she married'
            " once more, this time in the Bronx. In an application for a marriage license, she stated it was her"
            ' "first and only" marriage. Barrientos, now 39, is facing two criminal counts of "offering a false'
            ' instrument for filing in the first degree," referring to her false statements on the 2010 marriage'
            " license application, according to court documents. Prosecutors said the marriages were part of an"
            " immigration scam. On Friday, she pleaded not guilty at State Supreme Court in the Bronx, according to"
            " her attorney, Christopher Wright, who declined to comment further. After leaving court, Barrientos was"
            " arrested and charged with theft of service and criminal trespass for allegedly sneaking into the New"
            " York subway through an emergency exit, said Detective Annette Markowski, a police spokeswoman. In total,"
            " Barrientos has been married 10 times, with nine of her marriages occurring between 1999 and 2002.  All"
            " occurred either in Westchester County, Long Island, New Jersey or the Bronx. She is believed to still be"
            " married to four men, and at one time, she was married to eight men at once, prosecutors say. Prosecutors"
            " said the immigration scam involved some of her husbands, who filed for permanent residence status"
            " shortly after the marriages.  Any divorces happened only after such filings were approved. It was"
            " unclear whether any of the men will be prosecuted. The case was referred to the Bronx District"
            " Attorney's Office by Immigration and Customs Enforcement and the Department of Homeland Security's"
            ' Investigation Division. Seven of the men are from so-called "red-flagged" countries, including Egypt,'
            " Turkey, Georgia, Pakistan and Mali. Her eighth husband, Rashid Rajput, was deported in 2006 to his"
            " native Pakistan after an investigation by the Joint Terrorism Task Force. If convicted, Barrientos faces"
            " up to four years in prison.  Her next court appearance is scheduled for May 18."
        )
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
        bart_tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
        bart_model = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn").to(torch_device)
        input_ids = bart_tokenizer(
            article, add_special_tokens=False, truncation=True, max_length=512, return_tensors="pt"
        ).input_ids.to(torch_device)

        outputs = bart_model.generate(input_ids, penalty_alpha=0.5, top_k=5, max_length=64)
        generated_text = bart_tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
1738
1739
1740
1741
                "Liana Barrientos, 39, pleaded not guilty to charges related to false marriage statements. "
                "Prosecutors say she married at least 10 times, sometimes within two weeks of each other. She is "
                "accused of being part of an immigration scam to get permanent residency. If convicted, she faces up "
                "to four years in"
1742
1743
1744
1745
1746
            ],
        )

    @slow
    def test_contrastive_search_t5(self):
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
        article = (
            " New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County, New York. A"
            " year later, she got married again in Westchester County, but to a different man and without divorcing"
            " her first husband.  Only 18 days after that marriage, she got hitched yet again. Then, Barrientos"
            ' declared "I do" five more times, sometimes only within two weeks of each other. In 2010, she married'
            " once more, this time in the Bronx. In an application for a marriage license, she stated it was her"
            ' "first and only" marriage. Barrientos, now 39, is facing two criminal counts of "offering a false'
            ' instrument for filing in the first degree," referring to her false statements on the 2010 marriage'
            " license application, according to court documents. Prosecutors said the marriages were part of an"
            " immigration scam. On Friday, she pleaded not guilty at State Supreme Court in the Bronx, according to"
            " her attorney, Christopher Wright, who declined to comment further. After leaving court, Barrientos was"
            " arrested and charged with theft of service and criminal trespass for allegedly sneaking into the New"
            " York subway through an emergency exit, said Detective Annette Markowski, a police spokeswoman. In total,"
            " Barrientos has been married 10 times, with nine of her marriages occurring between 1999 and 2002.  All"
            " occurred either in Westchester County, Long Island, New Jersey or the Bronx. She is believed to still be"
            " married to four men, and at one time, she was married to eight men at once, prosecutors say. Prosecutors"
            " said the immigration scam involved some of her husbands, who filed for permanent residence status"
            " shortly after the marriages.  Any divorces happened only after such filings were approved. It was"
            " unclear whether any of the men will be prosecuted. The case was referred to the Bronx District"
            " Attorney's Office by Immigration and Customs Enforcement and the Department of Homeland Security's"
            ' Investigation Division. Seven of the men are from so-called "red-flagged" countries, including Egypt,'
            " Turkey, Georgia, Pakistan and Mali. Her eighth husband, Rashid Rajput, was deported in 2006 to his"
            " native Pakistan after an investigation by the Joint Terrorism Task Force. If convicted, Barrientos faces"
            " up to four years in prison.  Her next court appearance is scheduled for May 18."
        )
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
        article = "summarize: " + article.strip()
        t5_tokenizer = AutoTokenizer.from_pretrained("flax-community/t5-base-cnn-dm")
        t5_model = T5ForConditionalGeneration.from_pretrained("flax-community/t5-base-cnn-dm").to(torch_device)
        input_ids = t5_tokenizer(
            article, add_special_tokens=False, truncation=True, max_length=512, return_tensors="pt"
        ).input_ids.to(torch_device)

        outputs = t5_model.generate(input_ids, penalty_alpha=0.5, top_k=5, max_length=64)
        generated_text = t5_tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
1785
1786
                "Liana Barrientos has been married 10 times, nine of them in the Bronx. Her husbands filed for "
                "permanent residence after the marriages, prosecutors say."
1787
1788
1789
1790
1791
            ],
        )

    @slow
    def test_contrastive_search_opt(self):
1792
1793
1794
1795
1796
        article = (
            "A chat between a curious human and the Statue of Liberty.\n\nHuman: What is your name?\nStatue: I am the "
            "Statue of Liberty.\nHuman: Where do you live?\nStatue: New York City.\nHuman: How long have you lived "
            "there?"
        )
1797

1798
1799
        opt_tokenizer = GPT2Tokenizer.from_pretrained("facebook/opt-1.3b")
        opt_model = OPTForCausalLM.from_pretrained("facebook/opt-1.3b").to(torch_device)
1800
1801
1802
1803
1804
1805
1806
1807
        input_ids = opt_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        outputs = opt_model.generate(input_ids, penalty_alpha=0.6, top_k=5, max_length=256)
        generated_text = opt_tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
                "A chat between a curious human and the Statue of Liberty.\n\nHuman: What is your name?\nStatue: I "
                "am the Statue of Liberty.\nHuman: Where do you live?\nStatue: New York City.\nHuman: How long have "
                "you lived there?\nStatue: A hundred years.\nHuman: And you鈥檙e from what country?\nStatue: The United "
                "States of America.\nHuman: Why did you come to America?\nStatue: I came to escape the tyranny of my "
                "country.\nHuman: What tyranny?\nStatue: They didn鈥檛 let me speak my mind.\nHuman: What was your "
                "country?\nStatue: It was a country of immigrants.\nHuman: Who were the immigrants?\nStatue: They "
                "were from all over the world.\nHuman: What language did they speak?\nStatue: French, Spanish, "
                "Italian, German, English鈥攜ou name it.\nHuman: And where did they come from?\nStatue: They came from "
                "every country in the world.\nHuman: And you were born in what country?\nStatue: I was born in "
                "France.\nHuman: And your parents were French?\nStatue"
1818
1819
1820
            ],
        )

1821
    @tooslow
1822
    def test_contrastive_search_gptj(self):
1823
1824
1825
1826
        article = (
            "DeepMind Technologies is a British artificial intelligence subsidiary of Alphabet Inc. and "
            "research laboratory founded in 2010. DeepMind was acquired by Google in 2014. The company is based"
        )
1827

1828
1829
1830
1831
1832
        tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")
        model = AutoModelForCausalLM.from_pretrained(
            "EleutherAI/gpt-j-6B", revision="float16", torch_dtype=torch.float16
        ).to(torch_device)
        input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
1833

1834
1835
        outputs = model.generate(input_ids, penalty_alpha=0.6, top_k=4, max_length=256)
        generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)
1836
1837
1838
1839

        self.assertListEqual(
            generated_text,
            [
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
                "DeepMind Technologies is a British artificial intelligence subsidiary of Alphabet Inc. and research "
                "laboratory founded in 2010. DeepMind was acquired by Google in 2014. The company is based in London, "
                "United Kingdom with offices in Mountain View, San Francisco, New York City, Paris, Tokyo, Seoul, "
                "Beijing, Singapore, Tel Aviv, Dublin, Sydney, and Melbourne.[1]\n\nContents\n\nIn 2010, Google's "
                "parent company, Alphabet, announced a $500 million investment in DeepMind, with the aim of creating "
                "a company that would apply deep learning to problems in healthcare, energy, transportation, and "
                "other areas.[2]\n\nOn April 23, 2014, Google announced that it had acquired DeepMind for $400 "
                "million in cash and stock.[3] The acquisition was seen as a way for Google to enter the "
                "fast-growing field of artificial intelligence (AI), which it had so far avoided due to concerns "
                'about ethical and social implications.[4] Google co-founder Sergey Brin said that he was "thrilled" '
                'to have acquired DeepMind, and that it would "help us push the boundaries of AI even further."'
                "[5]\n\nDeepMind's founders, Demis Hassabis and Mustafa Suleyman, were joined by a number of Google "
                "employees"
1853
1854
1855
1856
1857
            ],
        )

    @slow
    def test_contrastive_search_gpt2(self):
1858
1859
1860
1861
        article = (
            "DeepMind Technologies is a British artificial intelligence subsidiary of Alphabet Inc. and research "
            "laboratory founded in 2010. DeepMind was acquired by Google in 2014. The company is based"
        )
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873

        gpt2_tokenizer = AutoTokenizer.from_pretrained("gpt2-large")
        gpt2_model = GPT2LMHeadModel.from_pretrained("gpt2-large").to(torch_device)
        input_ids = gpt2_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        outputs = gpt2_model.generate(input_ids, penalty_alpha=0.6, top_k=4, max_length=256)

        generated_text = gpt2_tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
                "DeepMind Technologies is a British artificial intelligence subsidiary of Alphabet Inc. and research "
                "laboratory founded in 2010. DeepMind was acquired by Google in 2014. The company is based in London, "
                "United Kingdom\n\nGoogle has a lot of data on its users and uses it to improve its products, such as "
                "Google Now, which helps users find the information they're looking for on the web. But the company "
                "is not the only one to collect data on its users. Facebook, for example, has its own facial "
                "recognition technology, as well as a database of millions of photos that it uses to personalize its "
                "News Feed.\n\nFacebook's use of data is a hot topic in the tech industry, with privacy advocates "
                "concerned about the company's ability to keep users' information private. In a blog post last "
                'year, Facebook CEO Mark Zuckerberg said his company would "do our best to be transparent about our '
                'data use and how we use it."\n\n"We have made it clear that we do not sell or share your data with '
                'third parties," Zuckerberg wrote. "If you have questions or concerns, please reach out to us at '
                'privacy@facebook.com."\n\nGoogle declined to comment on the privacy implications of its use of data, '
                "but said in a statement to The Associated Press that"
1887
1888
1889
            ],
        )

1890
1891
    def test_max_length_backward_compat_greedy(self):
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
1892
1893
1894
1895
        bart_tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
1896
1897
1898
1899
1900
1901
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        max_length = 20
        input_ids = input_ids.expand(2, -1)
        model_kwargs = bart_model._prepare_encoder_decoder_kwargs_for_generation(input_ids, {})
        input_ids = bart_model._prepare_decoder_input_ids_for_generation(
1902
            input_ids.shape[0],
1903
1904
1905
1906
            decoder_start_token_id=bart_model.config.decoder_start_token_id,
            bos_token_id=bart_model.config.bos_token_id,
        )

1907
1908
1909
1910
1911
1912
1913
1914
        with self.assertWarns(UserWarning):
            bart_model.greedy_search(
                input_ids,
                max_length=max_length,
                pad_token_id=bart_model.config.pad_token_id,
                eos_token_id=bart_model.config.eos_token_id,
                **model_kwargs,
            )
1915
1916
1917

    def test_max_length_backward_compat_sample(self):
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
1918
1919
1920
1921
        bart_tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
1922
1923
1924
1925
1926
1927
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        max_length = 20
        input_ids = input_ids.expand(2, -1)
        model_kwargs = bart_model._prepare_encoder_decoder_kwargs_for_generation(input_ids, {})
        input_ids = bart_model._prepare_decoder_input_ids_for_generation(
1928
            input_ids.shape[0],
1929
1930
1931
            decoder_start_token_id=bart_model.config.decoder_start_token_id,
            bos_token_id=bart_model.config.bos_token_id,
        )
1932
        with torch.no_grad():
1933
1934
1935
1936
1937
1938
1939
1940
            with self.assertWarns(UserWarning):
                bart_model.sample(
                    input_ids,
                    max_length=max_length,
                    pad_token_id=bart_model.config.pad_token_id,
                    eos_token_id=bart_model.config.eos_token_id,
                    **model_kwargs,
                )
1941
1942
1943

    def test_max_length_backward_compat_beam_search(self):
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
1944
1945
1946
1947
        bart_tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
1948
1949
1950
1951
1952
1953
1954
1955
1956
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        batch_size = 1
        max_length = 20
        num_beams = 2

        input_ids = input_ids.expand(2, -1)
        model_kwargs = bart_model._prepare_encoder_decoder_kwargs_for_generation(input_ids, {})
        input_ids = bart_model._prepare_decoder_input_ids_for_generation(
1957
            input_ids.shape[0],
1958
1959
1960
1961
1962
1963
1964
1965
1966
            decoder_start_token_id=bart_model.config.decoder_start_token_id,
            bos_token_id=bart_model.config.bos_token_id,
        )

        beam_scorer = BeamSearchScorer(
            batch_size=batch_size,
            num_beams=num_beams,
            device=torch_device,
        )
1967
1968
1969
1970
        with self.assertWarns(UserWarning):
            _ = bart_model.beam_search(
                input_ids, num_beams=num_beams, max_length=max_length, beam_scorer=beam_scorer, **model_kwargs
            )
1971
1972
1973

    def test_max_length_backward_compat_group_beam_search(self):
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
1974
1975
1976
1977
        bart_tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        batch_size = 1
        max_length = 20
        num_beams = 6
        num_beam_groups = 3
        num_return_sequences = num_beams * batch_size

        input_ids = input_ids.expand(6, -1)
        model_kwargs = bart_model._prepare_encoder_decoder_kwargs_for_generation(input_ids, {})
        input_ids = bart_model._prepare_decoder_input_ids_for_generation(
1989
            input_ids.shape[0],
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
            decoder_start_token_id=bart_model.config.decoder_start_token_id,
            bos_token_id=bart_model.config.bos_token_id,
        )

        diverse_beam_scorer = BeamSearchScorer(
            batch_size=batch_size,
            num_beams=num_beams,
            device=torch_device,
            num_beam_hyps_to_keep=num_return_sequences,
            num_beam_groups=num_beam_groups,
        )
2001
2002
2003
2004
        with self.assertWarns(UserWarning):
            bart_model.group_beam_search(
                input_ids, diverse_beam_scorer, num_beams=num_beams, max_length=max_length, **model_kwargs
            )
2005
2006
2007

    def test_max_length_warning_if_different(self):
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
2008
2009
2010
2011
        bart_tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        batch_size = 1

        max_length = 20
        num_beams = 6
        num_beam_groups = 3
        num_return_sequences = num_beams * batch_size
        stopping_criteria_max_length = 18
        stopping_criteria = StoppingCriteriaList([MaxLengthCriteria(max_length=stopping_criteria_max_length)])

        # Greedy
        input_ids = input_ids.expand(6, -1)
        model_kwargs = bart_model._prepare_encoder_decoder_kwargs_for_generation(input_ids, {})
        input_ids = bart_model._prepare_decoder_input_ids_for_generation(
2027
            input_ids.shape[0],
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
            decoder_start_token_id=bart_model.config.decoder_start_token_id,
            bos_token_id=bart_model.config.bos_token_id,
        )

        with self.assertWarns(UserWarning):
            bart_model.greedy_search(
                input_ids,
                max_length=max_length,
                pad_token_id=bart_model.config.pad_token_id,
                stopping_criteria=stopping_criteria,
                eos_token_id=bart_model.config.eos_token_id,
                **model_kwargs,
            )

        # Sample
        with self.assertWarns(UserWarning):
2044
2045
2046
2047
2048
2049
2050
2051
2052
            with torch.no_grad():
                bart_model.sample(
                    input_ids,
                    max_length=max_length,
                    stopping_criteria=stopping_criteria,
                    pad_token_id=bart_model.config.pad_token_id,
                    eos_token_id=bart_model.config.eos_token_id,
                    **model_kwargs,
                )
2053
2054
2055
2056
2057
2058
2059
2060

        # Beam
        beam_scorer = BeamSearchScorer(
            batch_size=batch_size,
            num_beams=num_beams,
            device=torch_device,
        )
        with self.assertWarns(UserWarning):
2061
2062
2063
2064
2065
2066
2067
2068
2069
            with torch.no_grad():
                bart_model.beam_search(
                    input_ids,
                    num_beams=num_beams,
                    stopping_criteria=stopping_criteria,
                    max_length=max_length,
                    beam_scorer=beam_scorer,
                    **model_kwargs,
                )
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087

        # Grouped beam search
        diverse_beam_scorer = BeamSearchScorer(
            batch_size=batch_size,
            num_beams=num_beams,
            device=torch_device,
            num_beam_hyps_to_keep=num_return_sequences,
            num_beam_groups=num_beam_groups,
        )
        with self.assertWarns(UserWarning):
            bart_model.group_beam_search(
                input_ids,
                diverse_beam_scorer,
                stopping_criteria=stopping_criteria,
                num_beams=num_beams,
                max_length=max_length,
                **model_kwargs,
            )
2088
2089
2090

    def test_beam_search_warning_if_max_length_is_passed(self):
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
2091
2092
2093
2094
        bart_tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
2095
2096
2097
2098
2099
2100
2101
2102

        batch_size = 1
        num_beams = 3

        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        input_ids = input_ids.expand(num_beams, -1)
        model_kwargs = bart_model._prepare_encoder_decoder_kwargs_for_generation(input_ids, {})

2103
2104
2105
        # pretend decoder_input_ids correspond to first encoder input id
        decoder_input_ids = input_ids[:, :1]

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
        stopping_criteria_max_length = 18
        stopping_criteria = StoppingCriteriaList([MaxLengthCriteria(max_length=stopping_criteria_max_length)])

        with self.assertWarns(UserWarning):
            beam_scorer = BeamSearchScorer(
                batch_size=batch_size,
                num_beams=num_beams,
                device=torch_device,
                max_length=10,
            )

        generated_ids = bart_model.beam_search(
2118
            decoder_input_ids,
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
            num_beams=num_beams,
            stopping_criteria=stopping_criteria,
            beam_scorer=beam_scorer,
            **model_kwargs,
        )

        beam_scorer_no_max_len = BeamSearchScorer(
            batch_size=batch_size,
            num_beams=num_beams,
            device=torch_device,
        )

        generated_ids_no_max_len = bart_model.beam_search(
2132
            decoder_input_ids,
2133
2134
2135
2136
2137
2138
2139
2140
            num_beams=num_beams,
            stopping_criteria=stopping_criteria,
            beam_scorer=beam_scorer_no_max_len,
            **model_kwargs,
        )

        # BeamSearchScorer max_length should not influence "real" max_length
        self.assertEqual(generated_ids.tolist(), generated_ids_no_max_len.tolist())
2141

2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
    def test_custom_stopping_criteria_overload_error(self):
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
        bart_tokenizer = BartTokenizer.from_pretrained("sshleifer/bart-tiny-random")
        bart_model = BartForConditionalGeneration.from_pretrained("sshleifer/bart-tiny-random").to(torch_device)

        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        stopping_criteria = StoppingCriteriaList()
        stopping_criteria.append(MaxLengthCriteria(max_length=42))
        with self.assertRaises(ValueError):
            bart_model.generate(input_ids, stopping_criteria=stopping_criteria)
        with self.assertRaises(ValueError):
            bart_model.generate(input_ids, stopping_criteria=stopping_criteria, max_length=32)

    def test_custom_stopping_criteria(self):
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
        bart_tokenizer = BartTokenizer.from_pretrained("sshleifer/bart-tiny-random")
        bart_model = BartForConditionalGeneration.from_pretrained("sshleifer/bart-tiny-random").to(torch_device)
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        class DummyCriteria(StoppingCriteria):
            def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
                return input_ids.shape[-1] >= 20

        stopping_criteria = StoppingCriteriaList()
        stopping_criteria.append(DummyCriteria())

        self.assertEqual(
            list(bart_model.generate(input_ids, stopping_criteria=stopping_criteria, max_length=22).shape),
            [1, 20],
        )
        self.assertEqual(
            list(bart_model.generate(input_ids, stopping_criteria=stopping_criteria, max_length=18).shape),
            [1, 18],
        )

2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
    def test_stop_sequence_stopping_criteria(self):

        prompt = """Hello I believe in"""
        generator = pipeline("text-generation", model="hf-internal-testing/tiny-random-bart")
        output = generator(prompt)
        self.assertEqual(
            output,
            [
                {
                    "generated_text": (
                        "Hello I believe in in in number number number number number number number number number"
                    )
                }
            ],
        )

        output = generator(prompt, stop_sequence=" number")
        self.assertEqual(output, [{"generated_text": "Hello I believe in in in number"}])

2196
2197
2198
    def test_custom_logits_processor(self):
        bart_tokenizer = BartTokenizer.from_pretrained("sshleifer/bart-tiny-random")
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
2199
2200
2201
        bart_model = BartForConditionalGeneration.from_pretrained("sshleifer/bart-tiny-random", min_length=1).to(
            torch_device
        )
2202
2203
2204
2205
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        logits_processor = LogitsProcessorList()
        logits_processor.append(MinLengthLogitsProcessor(min_length=10, eos_token_id=0))
2206
        # it should not be allowed to both define `min_length` via config and `logits_processor` list
2207
2208
2209
2210
2211
2212
        with self.assertRaises(ValueError):
            bart_model.generate(input_ids, logits_processor=logits_processor)

        bart_model.config.min_length = None
        bart_model.generate(input_ids, logits_processor=logits_processor)

2213
    def test_max_new_tokens_encoder_decoder(self):
2214
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
2215
2216
2217
2218
        bart_tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
2219
2220
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

2221
        self.assertEqual(list(input_ids.shape), [1, 29])
2222
2223

        max_new_tokens = 3
2224
        bart_model.config.max_length = 20
2225
        bart_model.config.eos_token_id = None
2226
2227

        # Encoder decoder call
2228
2229
2230
2231
2232
2233
        outputs = bart_model.generate(input_ids, max_new_tokens=max_new_tokens)
        # 1 BOS + 3 new tokens
        self.assertEqual(list(outputs.shape), [1, 4])

        # Decoder only call
        outputs = bart_model.generate(decoder_input_ids=input_ids, max_new_tokens=max_new_tokens)
2234
2235
        # 29 + 3 new tokens
        self.assertEqual(list(outputs.shape), [1, 32])
2236

2237
2238
2239
2240
2241
2242
        # Encoder decoder call > 20
        outputs = bart_model.generate(max_new_tokens=max_new_tokens + 20)

        # 1 BOS + 20 + 3 new tokens
        self.assertEqual(list(outputs.shape), [1, 24])

2243
2244
        # max_new_tokens and max_length serve the same purpose and must not be used together.
        with self.assertRaises(ValueError):
2245
2246
            bart_model.generate(decoder_input_ids=input_ids, max_new_tokens=10, max_length=20)

2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
    def test_max_new_tokens_decoder_only_contrastive_search_t5(self):
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
        t5_tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
        t5_model = T5ForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-t5").to(torch_device)
        input_ids = t5_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        self.assertEqual(list(input_ids.shape), [1, 56])

        max_new_tokens = 3
        t5_model.config.max_length = 20
        t5_model.config.eos_token_id = None

        # Encoder decoder call
        outputs = t5_model.generate(input_ids, max_new_tokens=max_new_tokens, penalty_alpha=0.6, top_k=4)
        # 1 BOS + 3 new tokens
        self.assertEqual(list(outputs.shape), [1, 4])

        # Decoder only call
        outputs = t5_model.generate(
            decoder_input_ids=input_ids, max_new_tokens=max_new_tokens, penalty_alpha=0.6, top_k=4
        )
        # 56 + 3 new tokens
        self.assertEqual(list(outputs.shape), [1, 59])

        # Encoder decoder call > 20
        outputs = t5_model.generate(max_new_tokens=max_new_tokens + 20, penalty_alpha=0.6, top_k=4)

        # 1 BOS + 20 + 3 new tokens
        self.assertEqual(list(outputs.shape), [1, 24])

        # max_new_tokens and max_length serve the same purpose and must not be used together.
        with self.assertRaises(ValueError):
            t5_model.generate(
                decoder_input_ids=input_ids, max_new_tokens=10, max_length=20, penalty_alpha=0.6, top_k=4
            )

    def test_max_new_tokens_decoder_only_contrastive_search_bart(self):
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
        bart_tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        self.assertEqual(list(input_ids.shape), [1, 29])

        max_new_tokens = 3
        bart_model.config.max_length = 20
        bart_model.config.eos_token_id = None

        # Encoder decoder call
        outputs = bart_model.generate(input_ids, max_new_tokens=max_new_tokens, penalty_alpha=0.6, top_k=4)
        # 1 BOS + 3 new tokens
        self.assertEqual(list(outputs.shape), [1, 4])

        # Decoder only call
        outputs = bart_model.generate(
            decoder_input_ids=input_ids, max_new_tokens=max_new_tokens, penalty_alpha=0.6, top_k=4
        )
        # 29 + 3 new tokens
        self.assertEqual(list(outputs.shape), [1, 32])

        # Encoder decoder call > 20
        outputs = bart_model.generate(max_new_tokens=max_new_tokens + 20, penalty_alpha=0.6, top_k=4)

        # 1 BOS + 20 + 3 new tokens
        self.assertEqual(list(outputs.shape), [1, 24])

        # max_new_tokens and max_length serve the same purpose and must not be used together.
        with self.assertRaises(ValueError):
            bart_model.generate(
                decoder_input_ids=input_ids, max_new_tokens=10, max_length=20, penalty_alpha=0.6, top_k=4
            )

    def test_max_new_tokens_decoder_only_contrastive_search_gptj(self):
        article = """Justin Timberlake."""
        gptj_tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gptj")
        gptj_model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gptj").to(torch_device)
        input_ids = gptj_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        self.assertEqual(list(input_ids.shape), [1, 9])

        max_new_tokens = 3
        gptj_model.config.max_length = 20

        # call < 20
        outputs = gptj_model.generate(input_ids, max_new_tokens=max_new_tokens, penalty_alpha=0.6, top_k=4)

        # 9 input_ids + 3 new tokens
        self.assertEqual(list(outputs.shape), [1, 12])

        # call > 20
        outputs = gptj_model.generate(max_new_tokens=max_new_tokens + 20, penalty_alpha=0.6, top_k=4)

        # 1 BOS token + 23 new tokens
        self.assertEqual(list(outputs.shape), [1, 24])

        # max_new_tokens and max_length serve the same purpose and must not be used together.
        with self.assertRaises(ValueError):
            gptj_model.generate(input_ids=input_ids, max_new_tokens=10, max_length=20, penalty_alpha=0.6, top_k=4)

    def test_max_new_tokens_decoder_only_contrastive_search_gpt2(self):
        article = """Justin Timberlake."""
        gpt2_tokenizer = GPT2Tokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        gpt2_model = GPT2LMHeadModel.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        input_ids = gpt2_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        self.assertEqual(list(input_ids.shape), [1, 9])

        max_new_tokens = 3
        gpt2_model.config.max_length = 20

        # call < 20
        outputs = gpt2_model.generate(input_ids, max_new_tokens=max_new_tokens, penalty_alpha=0.6, top_k=4)

        # 9 input_ids + 3 new tokens
        self.assertEqual(list(outputs.shape), [1, 12])

        # call > 20
        outputs = gpt2_model.generate(max_new_tokens=max_new_tokens + 20, penalty_alpha=0.6, top_k=4)

        # 1 BOS token + 23 new tokens
        self.assertEqual(list(outputs.shape), [1, 24])

        # max_new_tokens and max_length serve the same purpose and must not be used together.
        with self.assertRaises(ValueError):
            gpt2_model.generate(input_ids=input_ids, max_new_tokens=10, max_length=20, penalty_alpha=0.6, top_k=4)

2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
    def test_max_new_tokens_decoder_only(self):
        article = """Justin Timberlake."""
        gpt2_tokenizer = GPT2Tokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        gpt2_model = GPT2LMHeadModel.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        input_ids = gpt2_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        self.assertEqual(list(input_ids.shape), [1, 9])

        max_new_tokens = 3
        gpt2_model.config.max_length = 20

        # call < 20
        outputs = gpt2_model.generate(input_ids, max_new_tokens=max_new_tokens)

        # 9 input_ids + 3 new tokens
        self.assertEqual(list(outputs.shape), [1, 12])

        # call > 20
        outputs = gpt2_model.generate(max_new_tokens=max_new_tokens + 20)

        # 1 BOS token + 23 new tokens
        self.assertEqual(list(outputs.shape), [1, 24])

2398
2399
        # max_new_tokens and max_length serve the same purpose and must not be used together.
        with self.assertRaises(ValueError):
2400
            gpt2_model.generate(input_ids=input_ids, max_new_tokens=10, max_length=20)
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416

    def test_encoder_decoder_generate_with_inputs_embeds(self):
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
        tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart", max_length=5).to(
            torch_device
        )
        model.config.eos_token_id = None
        input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        inputs_embeds = model.get_input_embeddings()(input_ids)

        output_sequences = model.generate(inputs_embeds=inputs_embeds)

        # make sure model generated correctly until `max_length`
        self.assertEqual(output_sequences.shape, (1, 5))

2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
    def test_encoder_decoder_generate_attention_mask(self):
        articles = ["Timberlake", "Jessica Biel, welcome to parenthood among other things"]
        tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        # need extrem generation values here to force this test
        # to fail when `attention_mask` is not correctly treated in generate
        model = BartForConditionalGeneration.from_pretrained(
            "hf-internal-testing/tiny-random-bart", max_length=50, num_beams=5, num_return_sequences=5
        ).to(torch_device)

        model.config.eos_token_id = None
        input_ids = tokenizer(articles[0], return_tensors="pt").input_ids.to(torch_device)
        input_ids_batched = tokenizer(articles, padding=True, return_tensors="pt").input_ids.to(torch_device)

        output_sequences_batched = model.generate(
            input_ids=input_ids_batched, return_dict_in_generate=True, output_scores=True
        )
        output_sequences = model.generate(input_ids=input_ids, return_dict_in_generate=True, output_scores=True)

        batched_out = output_sequences_batched.sequences_scores
        out = output_sequences.sequences_scores

        diff = (batched_out[:5].sum() - out.sum()).abs()

        self.assertTrue(diff < 1e-4)

2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
    def test_decoder_generate_with_inputs_embeds(self):
        article = """I need input_ids to generate"""
        tokenizer = GPT2Tokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        model = GPT2LMHeadModel.from_pretrained("hf-internal-testing/tiny-random-gpt2", max_length=5).to(torch_device)
        input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        inputs_embeds = model.get_input_embeddings()(input_ids)

        # cannot generate from `inputs_embeds` for decoder only
        with self.assertRaises(ValueError):
            model.generate(inputs_embeds=inputs_embeds)
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463

    def test_generate_input_ids_as_kwarg(self):
        article = """I need input_ids to generate"""
        tokenizer = GPT2Tokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        model = GPT2LMHeadModel.from_pretrained("hf-internal-testing/tiny-random-gpt2", max_length=15).to(torch_device)
        input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        output_sequences_kwargs = model.generate(input_ids=input_ids).cpu()
        output_sequences = model.generate(input_ids).cpu()

        self.assertListEqual(output_sequences.tolist(), output_sequences_kwargs.tolist())
        self.assertEqual(output_sequences.shape, (1, 15))

2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
    def test_generate_non_nlp_input_ids_as_kwarg(self):
        model = ImageGPTForCausalImageModeling.from_pretrained(
            "hf-internal-testing/tiny-random-imagegpt", max_length=10
        ).to(torch_device)
        input_ids = ids_tensor((3, 5), vocab_size=10)

        output_sequences_kwargs = model.generate(input_ids=input_ids).cpu()
        output_sequences = model.generate(input_ids).cpu()

        self.assertListEqual(output_sequences.tolist(), output_sequences_kwargs.tolist())
        self.assertEqual(output_sequences.shape, (3, 10))

2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
    def test_generate_input_ids_as_encoder_kwarg(self):
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
        tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart", max_length=5).to(
            torch_device
        )
        model.config.eos_token_id = None
        input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        output_sequences_kwargs = model.generate(input_ids=input_ids).cpu()
        output_sequences = model.generate(input_ids).cpu()

        self.assertListEqual(output_sequences.tolist(), output_sequences_kwargs.tolist())
        self.assertEqual(output_sequences.shape, (1, 5))

    def test_generate_inputs_and_encoder_kwargs(self):
        article = """I need input_ids to generate"""
        tokenizer = GPT2Tokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        model = GPT2LMHeadModel.from_pretrained("hf-internal-testing/tiny-random-gpt2", max_length=10).to(torch_device)
        input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        with self.assertRaises(ValueError):
            model.generate(input_ids, input_ids=input_ids)

    def test_generate_too_many_encoder_kwargs(self):
        article = """I need input_ids to generate"""
        tokenizer = GPT2Tokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        model = GPT2LMHeadModel.from_pretrained("hf-internal-testing/tiny-random-gpt2", max_length=10).to(torch_device)
        input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        with self.assertRaises(ValueError):
2504
            model.generate(input_ids=input_ids, inputs_embeds=input_ids)
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534

    def test_generate_input_values_as_encoder_kwarg(self):
        input_values = floats_tensor((2, 250))
        model = SpeechEncoderDecoderModel.from_pretrained("hf-internal-testing/tiny-random-speech-encoder-decoder")
        model = model.to(torch_device)
        output_sequences_kwargs = model.generate(input_values=input_values, max_length=5).cpu()
        output_sequences = model.generate(input_values, max_length=5).cpu()

        self.assertListEqual(output_sequences.tolist(), output_sequences_kwargs.tolist())
        self.assertEqual(output_sequences.shape, (2, 5))

    def test_generate_input_features_as_encoder_kwarg(self):
        input_features = floats_tensor((3, 20, 24))
        model = Speech2TextForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-speech_to_text")
        model = model.to(torch_device)
        output_sequences_kwargs = model.generate(input_features=input_features, max_length=5).cpu()
        output_sequences = model.generate(input_features, max_length=5).cpu()

        self.assertListEqual(output_sequences.tolist(), output_sequences_kwargs.tolist())
        self.assertEqual(output_sequences.shape, (3, 5))

    def test_generate_pixel_values_as_encoder_kwarg(self):
        pixel_values = floats_tensor((2, 3, 30, 30))
        model = VisionEncoderDecoderModel.from_pretrained("hf-internal-testing/tiny-random-vision-encoder-decoder")
        model = model.to(torch_device)
        output_sequences_kwargs = model.generate(pixel_values=pixel_values, max_length=5).cpu()
        output_sequences = model.generate(pixel_values, max_length=5).cpu()

        self.assertListEqual(output_sequences.tolist(), output_sequences_kwargs.tolist())
        self.assertEqual(output_sequences.shape, (2, 5))
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550

    def test_generate_encoder_outputs_attention_mask(self):
        input_values = floats_tensor((2, 250)).to(torch_device)
        attention_mask = torch.ones_like(input_values)
        model = SpeechEncoderDecoderModel.from_pretrained("hf-internal-testing/tiny-random-speech-encoder-decoder")
        model = model.to(torch_device)

        encoder = model.get_encoder()

        encoder_outputs = encoder(input_values)

        output_sequences_no_mask = model.generate(encoder_outputs=encoder_outputs).cpu()
        output_sequences_with_mask = model.generate(encoder_outputs=encoder_outputs, attention_mask=attention_mask)
        output_sequences_with_mask = output_sequences_with_mask.cpu()

        self.assertListEqual(output_sequences_no_mask.tolist(), output_sequences_with_mask.tolist())
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694

    def test_transition_scores_beam_search_encoder_decoder(self):
        articles = [
            "Justin Timberlake and Jessica Biel, welcome to parenthood.",
            "Michael Phelps is arguably the most decorated Olympian of all time.",
        ]
        tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        model = BartForConditionalGeneration.from_pretrained(
            "hf-internal-testing/tiny-random-bart",
            max_length=10,
            num_beams=4,
            num_return_sequences=2,
            eos_token_id=None,
            return_dict_in_generate=True,
            output_scores=True,
            length_penalty=0.0,
        )
        model = model.to(torch_device)

        input_ids = tokenizer(articles, return_tensors="pt", padding=True).input_ids.to(torch_device)
        outputs = model.generate(input_ids=input_ids)

        transition_scores = model.compute_transition_beam_scores(
            outputs.sequences, outputs.scores, outputs.beam_indices
        )
        transition_scores_sum = transition_scores.sum(-1)

        self.assertTrue(torch.allclose(transition_scores_sum, outputs.sequences_scores, atol=1e-3))

    def test_transition_scores_beam_search_encoder_decoder_with_eos(self):
        articles = [
            "Justin Timberlake and Jessica Biel, welcome to parenthood.",
            "Michael Phelps is arguably the most decorated Olympian of all time.",
        ]
        tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        model = BartForConditionalGeneration.from_pretrained(
            "hf-internal-testing/tiny-random-bart",
            max_length=10,
            num_beams=4,
            num_return_sequences=2,
            return_dict_in_generate=True,
            output_scores=True,
            length_penalty=0.0,
        )
        model = model.to(torch_device)

        input_ids = tokenizer(articles, return_tensors="pt", padding=True).input_ids.to(torch_device)
        outputs = model.generate(input_ids=input_ids)

        transition_scores = model.compute_transition_beam_scores(
            outputs.sequences, outputs.scores, outputs.beam_indices
        )
        transition_scores_sum = transition_scores.sum(-1)

        self.assertTrue(torch.allclose(transition_scores_sum, outputs.sequences_scores, atol=1e-3))

    def test_transition_scores_beam_search_decoder_only(self):
        articles = [
            "Justin Timberlake",
            "Michael Phelps",
        ]
        tokenizer = GPT2Tokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        tokenizer.pad_token = tokenizer.eos_token

        model = GPT2LMHeadModel.from_pretrained(
            "hf-internal-testing/tiny-random-gpt2",
            max_length=10,
            num_beams=4,
            num_return_sequences=2,
            pad_token_id=tokenizer.eos_token_id,
            eos_token_id=None,
            return_dict_in_generate=True,
            output_scores=True,
            length_penalty=0.0,
        )
        model = model.to(torch_device)

        input_ids = tokenizer(articles, return_tensors="pt", padding=True).input_ids.to(torch_device)
        outputs = model.generate(input_ids=input_ids)

        transition_scores = model.compute_transition_beam_scores(
            outputs.sequences, outputs.scores, outputs.beam_indices
        )
        transition_scores_sum = transition_scores.sum(-1)

        self.assertTrue(torch.allclose(transition_scores_sum, outputs.sequences_scores, atol=1e-3))

    def test_transition_scores_beam_sample_encoder_decoder(self):
        articles = [
            "Justin Timberlake and Jessica Biel, welcome to parenthood.",
            "Michael Phelps is arguably the most decorated Olympian of all time.",
        ]
        tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        model = BartForConditionalGeneration.from_pretrained(
            "hf-internal-testing/tiny-random-bart",
            do_sample=True,
            max_length=10,
            num_beams=4,
            num_return_sequences=2,
            eos_token_id=None,
            return_dict_in_generate=True,
            output_scores=True,
            length_penalty=0.0,
        )
        model = model.to(torch_device)

        input_ids = tokenizer(articles, return_tensors="pt", padding=True).input_ids.to(torch_device)
        outputs = model.generate(input_ids=input_ids)

        transition_scores = model.compute_transition_beam_scores(
            outputs.sequences, outputs.scores, outputs.beam_indices
        )
        transition_scores_sum = transition_scores.sum(-1)

        self.assertTrue(torch.allclose(transition_scores_sum, outputs.sequences_scores, atol=1e-3))

    def test_transition_scores_group_beam_search_encoder_decoder(self):
        articles = [
            "Justin Timberlake and Jessica Biel, welcome to parenthood.",
            "Michael Phelps is arguably the most decorated Olympian of all time.",
        ]
        tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        model = BartForConditionalGeneration.from_pretrained(
            "hf-internal-testing/tiny-random-bart",
            max_length=10,
            num_beams=2,
            num_beam_groups=2,
            num_return_sequences=2,
            eos_token_id=None,
            return_dict_in_generate=True,
            output_scores=True,
            length_penalty=0.0,
        )
        model = model.to(torch_device)

        input_ids = tokenizer(articles, return_tensors="pt", padding=True).input_ids.to(torch_device)
        outputs = model.generate(input_ids=input_ids)

        transition_scores = model.compute_transition_beam_scores(
            outputs.sequences, outputs.scores, outputs.beam_indices
        )
        transition_scores_sum = transition_scores.sum(-1)

        self.assertTrue(torch.allclose(transition_scores_sum, outputs.sequences_scores, atol=1e-3))
2695

2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
    @slow
    def test_transition_scores_early_stopping(self):
        # This is an aggressive test that makes sure that `beam_search's`
        # transition scores are computed correctly for varying `num_return_sequences`,
        # `num_beams` and `batch_size > 1`
        # 2 x input_ids for "question: How are you? \n context: I had a long day, "
        input_ids = torch.tensor(2 * [[822, 10, 571, 33, 25, 58, 2625, 10, 27, 141, 3, 9, 307, 239, 6, 1]]).to(
            torch_device
        )

        model = AutoModelForSeq2SeqLM.from_pretrained("t5-small").to(torch_device)

        result = model.generate(
            input_ids,
            max_length=10,
            return_dict_in_generate=True,
            output_scores=True,
            forced_eos_token_id=model.config.eos_token_id,
            num_beams=4,
            do_sample=False,
            num_return_sequences=3,
            length_penalty=0.0,
        )

        transition_scores = model.compute_transition_beam_scores(
            sequences=result.sequences, scores=result.scores, beam_indices=result.beam_indices
        )

        sum_transition_scores = torch.sum(transition_scores, dim=1)

        self.assertListEqual(sum_transition_scores.cpu().tolist(), result.sequences_scores.cpu().tolist())

    def test_log_scores_sample_decoder_only(self):
        articles = ["I need input_ids to generate", "Short and"]
        tokenizer = GPT2Tokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        tokenizer.padding_side = "left"
        tokenizer.pad_token = tokenizer.eos_token

        model = GPT2LMHeadModel.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)

        inputs = tokenizer(articles, return_tensors="pt", padding=True).to(torch_device)

        result = model.generate(
            **inputs,
            max_length=15,
            return_dict_in_generate=True,
            do_sample=False,
            output_scores=True,
        )

        # decoder-only starts generating from `input_ids`
        begin_generation = inputs.input_ids.shape[-1]

        gen_sequences = result.sequences[:, begin_generation:]
        probs = torch.stack(result.scores, dim=1).softmax(-1)

        gen_probs = torch.gather(probs, 2, gen_sequences[:, :, None]).squeeze(-1)
        expected_probs = torch.tensor([[0.0014, 0.0015], [0.0014, 0.0014]])

        self.assertTrue(torch.allclose(gen_probs.cpu(), expected_probs, atol=1e-3))

    def test_log_scores_sample_encoder_decoder(self):
        articles = ["I need input_ids to generate", "Short and"]
        tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(torch_device)

        inputs = tokenizer(articles, return_tensors="pt", padding=True).to(torch_device)

        result = model.generate(
            **inputs,
            max_length=3,
            return_dict_in_generate=True,
            do_sample=False,
            num_beams=1,
            output_scores=True,
        )

        # encoder-decoder has one decoder_start_token_id by default
        begin_generation = 1

        gen_sequences = result.sequences[:, begin_generation:]
        probs = torch.stack(result.scores, dim=1).softmax(-1)

        gen_probs = torch.gather(probs, 2, gen_sequences[:, :, None]).squeeze(-1)
        expected_probs = torch.tensor([[0.0013, 1.0000], [0.0013, 1.0000]])

        self.assertTrue(torch.allclose(gen_probs.cpu(), expected_probs, atol=1e-3))

2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
    @slow
    def test_beam_search_example_integration(self):
        # exactly the example provided in the docstrings of beam search, which previously
        # failed after directly copying from it. Refer to PR #15555
        tokenizer = AutoTokenizer.from_pretrained("t5-base")
        model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")

        encoder_input_str = "translate English to German: How old are you?"
        encoder_input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids

        # lets run beam search using 3 beams
        num_beams = 3
        # define decoder start token ids
        input_ids = torch.ones((num_beams, 1), device=model.device, dtype=torch.long)
        input_ids = input_ids * model.config.decoder_start_token_id

        # add encoder_outputs to model keyword arguments
        model_kwargs = {
            "encoder_outputs": model.get_encoder()(
                encoder_input_ids.repeat_interleave(num_beams, dim=0), return_dict=True
            )
        }

        # instantiate beam scorer
        beam_scorer = BeamSearchScorer(
            batch_size=1,
            num_beams=num_beams,
            device=model.device,
        )

        # instantiate logits processors
        logits_processor = LogitsProcessorList(
            [
                MinLengthLogitsProcessor(5, eos_token_id=model.config.eos_token_id),
            ]
        )

        outputs = model.beam_search(input_ids, beam_scorer, logits_processor=logits_processor, **model_kwargs)
        outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(outputs, ["Wie alt bist du?"])

2826
2827
    @slow
    def test_constrained_beam_search(self):
2828
2829
        model = GPT2LMHeadModel.from_pretrained("gpt2").to(torch_device)
        tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
2830

2831
2832
        force_tokens = tokenizer("scared", add_prefix_space=True, add_special_tokens=False).input_ids
        force_tokens_2 = tokenizer("big weapons", add_prefix_space=True, add_special_tokens=False).input_ids
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857

        constraints = [
            PhrasalConstraint(force_tokens),
            PhrasalConstraint(force_tokens_2),
        ]

        starting_text = ["The soldiers were not prepared and"]

        input_ids = tokenizer(starting_text, return_tensors="pt").input_ids.to(torch_device)

        outputs = model.generate(
            input_ids,
            constraints=constraints,
            num_beams=10,
            num_return_sequences=1,
            no_repeat_ngram_size=1,
            max_length=30,
            remove_invalid_values=True,
        )

        generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
2858
2859
                "The soldiers were not prepared and didn't know what to do. They had no idea how they would react if"
                " the enemy attacked them, big weapons scared"
2860
2861
2862
            ],
        )

2863
2864
    @slow
    def test_constrained_beam_search_mixed(self):
2865
2866
        model = GPT2LMHeadModel.from_pretrained("gpt2").to(torch_device)
        tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896

        force_phrase = tokenizer("scared", add_prefix_space=True, add_special_tokens=False).input_ids
        flexible_phrases = tokenizer(
            ["scream", "screams", "screaming", "screamed"], add_prefix_space=True, add_special_tokens=False
        ).input_ids

        constraints = [
            PhrasalConstraint(force_phrase),
            DisjunctiveConstraint(flexible_phrases),
        ]

        starting_text = ["The soldiers", "The child"]

        input_ids = tokenizer(starting_text, return_tensors="pt").input_ids.to(torch_device)

        outputs = model.generate(
            input_ids,
            constraints=constraints,
            num_beams=10,
            num_return_sequences=1,
            no_repeat_ngram_size=1,
            # max_length=20,
            remove_invalid_values=True,
        )

        generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
2897
2898
2899
                "The soldiers, who had been stationed at the base for more than a year before being evacuated"
                " screaming scared",
                "The child was taken to a local hospital where he died.\n 'I don't think screaming scared",
2900
2901
2902
2903
2904
            ],
        )

    @slow
    def test_constrained_beam_search_mixed_mixin(self):
2905
2906
        model = GPT2LMHeadModel.from_pretrained("gpt2").to(torch_device)
        tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933

        force_word = "scared"
        force_flexible = ["scream", "screams", "screaming", "screamed"]

        force_words_ids = [
            tokenizer([force_word], add_prefix_space=True, add_special_tokens=False).input_ids,
            tokenizer(force_flexible, add_prefix_space=True, add_special_tokens=False).input_ids,
        ]

        starting_text = ["The soldiers", "The child"]

        input_ids = tokenizer(starting_text, return_tensors="pt").input_ids.to(torch_device)

        outputs = model.generate(
            input_ids,
            force_words_ids=force_words_ids,
            num_beams=10,
            num_return_sequences=1,
            no_repeat_ngram_size=1,
            remove_invalid_values=True,
        )

        generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
2934
2935
2936
                "The soldiers, who had been stationed at the base for more than a year before being evacuated"
                " screaming scared",
                "The child was taken to a local hospital where he died.\n 'I don't think screaming scared",
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
            ],
        )

    @slow
    def test_constrained_beam_search_example_translation_mixin(self):
        tokenizer = AutoTokenizer.from_pretrained("t5-base")
        model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")

        encoder_input_str = "translate English to German: How old are you?"
        force_words = ["sind"]

        input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids
        force_words_ids = tokenizer(force_words, add_special_tokens=False).input_ids

        outputs = model.generate(
            input_ids,
            force_words_ids=force_words_ids,
            num_beams=10,
            num_return_sequences=1,
            no_repeat_ngram_size=1,
            remove_invalid_values=True,
        )

        outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)

2962
        self.assertListEqual(outputs, ["Wie alt sind Sie?"])
2963

2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
    @slow
    def test_constrained_beam_search_example_integration(self):
        tokenizer = AutoTokenizer.from_pretrained("t5-base")
        model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")

        encoder_input_str = "translate English to German: How old are you?"
        encoder_input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids

        # lets run beam search using 5 beams
        num_beams = 5
        # define decoder start token ids
        input_ids = torch.ones((num_beams, 1), device=model.device, dtype=torch.long)
        input_ids = input_ids * model.config.decoder_start_token_id

        # add encoder_outputs to model keyword arguments
        model_kwargs = {
            "encoder_outputs": model.get_encoder()(
                encoder_input_ids.repeat_interleave(num_beams, dim=0), return_dict=True
            )
        }

        constraint_str = "sind"
        constraint_token_ids = tokenizer.encode(constraint_str)[:-1]  # remove eos token
        constraints = [PhrasalConstraint(token_ids=constraint_token_ids)]

        # instantiate beam scorer
        beam_scorer = ConstrainedBeamSearchScorer(
            batch_size=1, num_beams=num_beams, device=model.device, constraints=constraints
        )

        # instantiate logits processors
        logits_processor = LogitsProcessorList(
            [
                MinLengthLogitsProcessor(5, eos_token_id=model.config.eos_token_id),
            ]
        )

        outputs = model.constrained_beam_search(
            input_ids, beam_scorer, constraints=constraints, logits_processor=logits_processor, **model_kwargs
        )
        outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)

3006
        self.assertListEqual(outputs, ["Wie alt sind Sie?"])
3007
3008

    def test_constrained_beam_search_mixin_type_checks(self):
3009
3010
        tokenizer = AutoTokenizer.from_pretrained("patrickvonplaten/t5-tiny-random")
        model = AutoModelForSeq2SeqLM.from_pretrained("patrickvonplaten/t5-tiny-random")
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046

        encoder_input_str = "translate English to German: How old are you?"
        input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids

        with self.assertRaises(ValueError):
            force_words = ["sind"]
            force_words_ids = tokenizer(force_words, return_tensors="pt").input_ids
            model.generate(
                input_ids,
                force_words_ids=force_words_ids,
                num_beams=10,
                num_return_sequences=1,
                no_repeat_ngram_size=1,
                remove_invalid_values=True,
            )

        with self.assertRaises(ValueError):
            force_words = ["sind"]
            force_words_ids = [tokenizer(force_words, return_tensors="pt").input_ids]
            model.generate(
                input_ids,
                force_words_ids=force_words_ids,
                num_beams=10,
                num_return_sequences=1,
                no_repeat_ngram_size=1,
                remove_invalid_values=True,
            )

        with self.assertRaises(ValueError):
            model.generate(input_ids, force_words_ids=[])

        with self.assertRaises(ValueError):
            model.generate(input_ids, force_words_ids=[[-1]])

        with self.assertRaises(ValueError):
            model.generate(input_ids, force_words_ids=[[[-1]]])
3047
3048

    def test_validate_generation_inputs(self):
3049
3050
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
        model = AutoModelForSeq2SeqLM.from_pretrained("hf-internal-testing/tiny-random-t5")
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062

        encoder_input_str = "Hello world"
        input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids

        # typos are quickly detected (the correct argument is `do_sample`)
        with self.assertRaisesRegex(ValueError, "do_samples"):
            model.generate(input_ids, do_samples=True)

        # arbitrary arguments that will not be used anywhere are also not accepted
        with self.assertRaisesRegex(ValueError, "foo"):
            fake_model_kwargs = {"foo": "bar"}
            model.generate(input_ids, **fake_model_kwargs)