"git@developer.sourcefind.cn:chenpangpang/transformers.git" did not exist on "fce78fd0e917312da36cea4d352896a8f6ec9cdc"
Unverified Commit 7e44226f authored by Joao Gante's avatar Joao Gante Committed by GitHub
Browse files

Generate: deprecate default `max_length` (#18018)

parent 8e838466
...@@ -15,6 +15,7 @@ ...@@ -15,6 +15,7 @@
# limitations under the License. # limitations under the License.
import warnings
from functools import partial from functools import partial
from typing import Dict, Optional from typing import Dict, Optional
...@@ -163,6 +164,7 @@ class FlaxGenerationMixin: ...@@ -163,6 +164,7 @@ class FlaxGenerationMixin:
self, self,
input_ids: jnp.ndarray, input_ids: jnp.ndarray,
max_length: Optional[int] = None, max_length: Optional[int] = None,
max_new_tokens: Optional[int] = None,
pad_token_id: Optional[int] = None, pad_token_id: Optional[int] = None,
bos_token_id: Optional[int] = None, bos_token_id: Optional[int] = None,
eos_token_id: Optional[int] = None, eos_token_id: Optional[int] = None,
...@@ -209,8 +211,12 @@ class FlaxGenerationMixin: ...@@ -209,8 +211,12 @@ class FlaxGenerationMixin:
input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
The sequence used as a prompt for the generation. The sequence used as a prompt for the generation.
max_length (`int`, *optional*, defaults to 20): max_length (`int`, *optional*, defaults to `model.config.max_length`):
The maximum length of the sequence to be generated. The maximum length the generated tokens can have. Corresponds to the length of the input prompt +
`max_new_tokens`. In general, prefer the use of `max_new_tokens`, which ignores the number of tokens in
the prompt.
max_new_tokens (`int`, *optional*):
The maximum numbers of tokens to generate, ignoring the number of tokens in the prompt.
do_sample (`bool`, *optional*, defaults to `False`): do_sample (`bool`, *optional*, defaults to `False`):
Whether or not to use sampling ; use greedy decoding otherwise. Whether or not to use sampling ; use greedy decoding otherwise.
temperature (`float`, *optional*, defaults to 1.0): temperature (`float`, *optional*, defaults to 1.0):
...@@ -258,8 +264,6 @@ class FlaxGenerationMixin: ...@@ -258,8 +264,6 @@ class FlaxGenerationMixin:
>>> tokenizer.batch_decode(outputs, skip_special_tokens=True) >>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
```""" ```"""
# set init values # set init values
max_length = max_length if max_length is not None else self.config.max_length
min_length = min_length if min_length is not None else self.config.min_length
bos_token_id = bos_token_id if bos_token_id is not None else self.config.bos_token_id bos_token_id = bos_token_id if bos_token_id is not None else self.config.bos_token_id
pad_token_id = pad_token_id if pad_token_id is not None else self.config.pad_token_id pad_token_id = pad_token_id if pad_token_id is not None else self.config.pad_token_id
eos_token_id = eos_token_id if eos_token_id is not None else self.config.eos_token_id eos_token_id = eos_token_id if eos_token_id is not None else self.config.eos_token_id
...@@ -270,11 +274,6 @@ class FlaxGenerationMixin: ...@@ -270,11 +274,6 @@ class FlaxGenerationMixin:
if decoder_start_token_id is None and self.config.is_encoder_decoder: if decoder_start_token_id is None and self.config.is_encoder_decoder:
raise ValueError("`decoder_start_token_id` has to be defined for encoder-decoder generation.") raise ValueError("`decoder_start_token_id` has to be defined for encoder-decoder generation.")
if min_length is not None and min_length > max_length:
raise ValueError(
f"Unfeasable length constraints: the minimum length ({min_length}) is larger than the maximum "
f"length ({max_length})"
)
if self.config.is_encoder_decoder: if self.config.is_encoder_decoder:
# add encoder_outputs to model_kwargs # add encoder_outputs to model_kwargs
...@@ -283,6 +282,42 @@ class FlaxGenerationMixin: ...@@ -283,6 +282,42 @@ class FlaxGenerationMixin:
# prepare decoder_input_ids for generation # prepare decoder_input_ids for generation
input_ids = jnp.ones((input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id input_ids = jnp.ones((input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
# Prepare `max_length` depending on other stopping criteria.
input_ids_seq_length = input_ids.shape[-1]
if max_length is None and max_new_tokens is None:
warnings.warn(
"Neither `max_length` nor `max_new_tokens` have been set, `max_length` will default to "
f"{self.config.max_length} (`self.config.max_length`). Controlling `max_length` via the config is "
"deprecated and `max_length` will be removed from the config in v5 of Transformers -- we recommend "
"using `max_new_tokens` to control the maximum length of the generation.",
UserWarning,
)
elif max_length is None and max_new_tokens is not None:
max_length = max_new_tokens + input_ids_seq_length
elif max_length is not None and max_new_tokens is not None:
raise ValueError(
"Both `max_new_tokens` and `max_length` have been set but they serve the same purpose -- setting a"
" limit to the generated output length. Remove one of those arguments. Please refer to the"
" documentation for more information. "
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)"
)
# default to config if still None
max_length = max_length if max_length is not None else self.config.max_length
min_length = min_length if min_length is not None else self.config.min_length
if min_length is not None and min_length > max_length:
raise ValueError(
f"Unfeasable length constraints: the minimum length ({min_length}) is larger than the maximum "
f"length ({max_length})"
)
if input_ids_seq_length >= max_length:
input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
logger.warning(
f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
f" {max_length}. This can lead to unexpected behavior. You should consider increasing"
"`max_new_tokens`."
)
do_sample = do_sample if do_sample is not None else self.config.do_sample do_sample = do_sample if do_sample is not None else self.config.do_sample
num_beams = num_beams if num_beams is not None else self.config.num_beams num_beams = num_beams if num_beams is not None else self.config.num_beams
......
...@@ -15,6 +15,7 @@ ...@@ -15,6 +15,7 @@
# limitations under the License. # limitations under the License.
import inspect import inspect
import warnings
from dataclasses import dataclass from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union from typing import Any, Dict, List, Optional, Tuple, Union
...@@ -53,8 +54,8 @@ class TFGreedySearchDecoderOnlyOutput(ModelOutput): ...@@ -53,8 +54,8 @@ class TFGreedySearchDecoderOnlyOutput(ModelOutput):
if all batches finished early due to the `eos_token_id`. if all batches finished early due to the `eos_token_id`.
scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax) Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
at each generation step. `(max_length-input_ids.shape[-1],)`-shaped tuple of `tf.Tensor` with each tensor at each generation step. Tuple of `tf.Tensor` with up to `max_new_tokens` elements (one element for each
of shape `(batch_size, config.vocab_size)`). generated token), with each tensor of shape `(batch_size, config.vocab_size)`.
attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`tf.Tensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`. `tf.Tensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
...@@ -83,8 +84,8 @@ class TFGreedySearchEncoderDecoderOutput(ModelOutput): ...@@ -83,8 +84,8 @@ class TFGreedySearchEncoderDecoderOutput(ModelOutput):
if all batches finished early due to the `eos_token_id`. if all batches finished early due to the `eos_token_id`.
scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax) Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
at each generation step. `(max_length-1,)`-shaped tuple of `tf.Tensor` with each tensor of shape at each generation step. Tuple of `tf.Tensor` with up to `max_new_tokens` elements (one element for each
`(batch_size, config.vocab_size)`). generated token), with each tensor of shape `(batch_size, config.vocab_size)`.
encoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): encoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer of the decoder) of shape `(batch_size, num_heads, sequence_length, Tuple of `tf.Tensor` (one for each layer of the decoder) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. sequence_length)`.
...@@ -123,8 +124,8 @@ class TFSampleDecoderOnlyOutput(ModelOutput): ...@@ -123,8 +124,8 @@ class TFSampleDecoderOnlyOutput(ModelOutput):
if all batches finished early due to the `eos_token_id`. if all batches finished early due to the `eos_token_id`.
scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax) Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
at each generation step. `(max_length-input_ids.shape[-1],)`-shaped tuple of `tf.Tensor` with each tensor at each generation step. Tuple of `tf.Tensor` with up to `max_new_tokens` elements (one element for each
of shape `(batch_size*num_return_sequences, config.vocab_size)`). generated token), with each tensor of shape `(batch_size*num_return_sequences, config.vocab_size)`.
attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`tf.Tensor` of shape `(num_return_sequences*batch_size, num_heads, generated_length, sequence_length)`. `tf.Tensor` of shape `(num_return_sequences*batch_size, num_heads, generated_length, sequence_length)`.
...@@ -153,8 +154,8 @@ class TFSampleEncoderDecoderOutput(ModelOutput): ...@@ -153,8 +154,8 @@ class TFSampleEncoderDecoderOutput(ModelOutput):
if all batches finished early due to the `eos_token_id`. if all batches finished early due to the `eos_token_id`.
scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax) Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
at each generation step. `(max_length-1,)`-shaped tuple of `tf.Tensor` with each tensor of shape at each generation step. Tuple of `tf.Tensor` with up to `max_new_tokens` elements (one element for each
`(batch_size*num_return_sequences, config.vocab_size)`). generated token), with each tensor of shape `(batch_size*num_return_sequences, config.vocab_size)`.
encoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): encoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer of the decoder) of shape `(batch_size*num_return_sequences, Tuple of `tf.Tensor` (one for each layer of the decoder) of shape `(batch_size*num_return_sequences,
num_heads, sequence_length, sequence_length)`. num_heads, sequence_length, sequence_length)`.
...@@ -194,9 +195,9 @@ class TFBeamSearchDecoderOnlyOutput(ModelOutput): ...@@ -194,9 +195,9 @@ class TFBeamSearchDecoderOnlyOutput(ModelOutput):
Final beam scores of the generated `sequences`. Final beam scores of the generated `sequences`.
scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
Processed beam scores for each vocabulary token at each generation step. Beam scores consisting of log Processed beam scores for each vocabulary token at each generation step. Beam scores consisting of log
softmax scores for each vocabulary token and sum of log softmax of previously generated tokens in this beam softmax scores for each vocabulary token and sum of log softmax of previously generated tokens in this
. `(max_length-input_ids.shape[-1],)`-shaped tuple of `tf.Tensor` with each tensor of shape beam. Tuple of `tf.Tensor` with up to `max_new_tokens` elements (one element for each generated token),
`(batch_size*num_beams*num_return_sequences, config.vocab_size)`). with each tensor of shape `(batch_size*num_beams*num_return_sequences, config.vocab_size)`.
attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`tf.Tensor` of shape `(batch_size*num_beams, num_heads, generated_length, sequence_length)`. `tf.Tensor` of shape `(batch_size*num_beams, num_heads, generated_length, sequence_length)`.
...@@ -227,9 +228,9 @@ class TFBeamSearchEncoderDecoderOutput(ModelOutput): ...@@ -227,9 +228,9 @@ class TFBeamSearchEncoderDecoderOutput(ModelOutput):
Final beam scores of the generated `sequences`. Final beam scores of the generated `sequences`.
scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
Processed beam scores for each vocabulary token at each generation step. Beam scores consisting of log Processed beam scores for each vocabulary token at each generation step. Beam scores consisting of log
softmax scores for each vocabulary token and sum of log softmax of previously generated tokens in this beam softmax scores for each vocabulary token and sum of log softmax of previously generated tokens in this
. `(max_length-1,)`-shaped tuple of `tf.Tensor` with each tensor of shape `(batch_size*num_beams, beam. `Tuple of `tf.Tensor` with up to `max_new_tokens` elements (one element for each generated token),
config.vocab_size)`). with each tensor of shape `(batch_size*num_beams, config.vocab_size)`.
attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
encoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): encoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer of the decoder) of shape `(batch_size, num_heads, sequence_length, Tuple of `tf.Tensor` (one for each layer of the decoder) of shape `(batch_size, num_heads, sequence_length,
...@@ -272,9 +273,9 @@ class TFBeamSampleDecoderOnlyOutput(ModelOutput): ...@@ -272,9 +273,9 @@ class TFBeamSampleDecoderOnlyOutput(ModelOutput):
Final beam scores of the generated `sequences`. Final beam scores of the generated `sequences`.
scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
Processed beam scores for each vocabulary token at each generation step. Beam scores consisting of log Processed beam scores for each vocabulary token at each generation step. Beam scores consisting of log
softmax scores for each vocabulary token and sum of log softmax of previously generated tokens in this beam softmax scores for each vocabulary token and sum of log softmax of previously generated tokens in this
. `(max_length-input_ids.shape[-1],)`-shaped tuple of `tf.Tensor` with each tensor of shape beam. Tuple of `tf.Tensor` with up to `max_new_tokens` elements (one element for each generated token),
`(batch_size*num_beams*num_return_sequences, config.vocab_size)`). with each tensor of shape `(batch_size*num_beams*num_return_sequences, config.vocab_size)`.
attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`tf.Tensor` of shape `(batch_size*num_beams, num_heads, generated_length, sequence_length)`. `tf.Tensor` of shape `(batch_size*num_beams, num_heads, generated_length, sequence_length)`.
...@@ -305,9 +306,9 @@ class TFBeamSampleEncoderDecoderOutput(ModelOutput): ...@@ -305,9 +306,9 @@ class TFBeamSampleEncoderDecoderOutput(ModelOutput):
Final beam scores of the generated `sequences`. Final beam scores of the generated `sequences`.
scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
Processed beam scores for each vocabulary token at each generation step. Beam scores consisting of log Processed beam scores for each vocabulary token at each generation step. Beam scores consisting of log
softmax scores for each vocabulary token and sum of log softmax of previously generated tokens in this beam softmax scores for each vocabulary token and sum of log softmax of previously generated tokens in this
. `(max_length-1,)`-shaped tuple of `tf.Tensor` with each tensor of shape `(batch_size*num_beams, beam. Tuple of `tf.Tensor` with up to `max_new_tokens` elements (one element for each generated token),
config.vocab_size)`). with each tensor of shape `(batch_size*num_beams, config.vocab_size)`.
encoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): encoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer of the decoder) of shape `(batch_size, num_heads, sequence_length, Tuple of `tf.Tensor` (one for each layer of the decoder) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. sequence_length)`.
...@@ -375,6 +376,7 @@ class TFGenerationMixin: ...@@ -375,6 +376,7 @@ class TFGenerationMixin:
self, self,
input_ids=None, input_ids=None,
max_length=None, max_length=None,
max_new_tokens=None,
min_length=None, min_length=None,
do_sample=None, do_sample=None,
early_stopping=None, early_stopping=None,
...@@ -423,8 +425,12 @@ class TFGenerationMixin: ...@@ -423,8 +425,12 @@ class TFGenerationMixin:
method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs` method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs`
should of in the format of `input_ids`. For encoder-decoder models *inputs* can represent any of should of in the format of `input_ids`. For encoder-decoder models *inputs* can represent any of
`input_ids`, `input_values`, `input_features`, or `pixel_values`. `input_ids`, `input_values`, `input_features`, or `pixel_values`.
max_length (`int`, *optional*, defaults to 20): max_length (`int`, *optional*, defaults to `model.config.max_length`):
The maximum length of the sequence to be generated. The maximum length the generated tokens can have. Corresponds to the length of the input prompt +
`max_new_tokens`. In general, prefer the use of `max_new_tokens`, which ignores the number of tokens in
the prompt.
max_new_tokens (`int`, *optional*):
The maximum numbers of tokens to generate, ignoring the number of tokens in the prompt.
min_length (`int`, *optional*, defaults to 10): min_length (`int`, *optional*, defaults to 10):
The minimum length of the sequence to be generated. The minimum length of the sequence to be generated.
do_sample (`bool`, *optional*, defaults to `False`): do_sample (`bool`, *optional*, defaults to `False`):
...@@ -577,6 +583,7 @@ class TFGenerationMixin: ...@@ -577,6 +583,7 @@ class TFGenerationMixin:
return self._generate( return self._generate(
input_ids=input_ids, input_ids=input_ids,
max_length=max_length, max_length=max_length,
max_new_tokens=max_new_tokens,
min_length=min_length, min_length=min_length,
do_sample=do_sample, do_sample=do_sample,
early_stopping=early_stopping, early_stopping=early_stopping,
...@@ -1286,6 +1293,7 @@ class TFGenerationMixin: ...@@ -1286,6 +1293,7 @@ class TFGenerationMixin:
self, self,
input_ids=None, input_ids=None,
max_length=None, max_length=None,
max_new_tokens=None,
min_length=None, min_length=None,
do_sample=None, do_sample=None,
early_stopping=None, early_stopping=None,
...@@ -1332,8 +1340,12 @@ class TFGenerationMixin: ...@@ -1332,8 +1340,12 @@ class TFGenerationMixin:
input_ids (`tf.Tensor` of `dtype=tf.int32` and shape `(batch_size, sequence_length)`, *optional*): input_ids (`tf.Tensor` of `dtype=tf.int32` and shape `(batch_size, sequence_length)`, *optional*):
The sequence used as a prompt for the generation. If `None` the method initializes it with The sequence used as a prompt for the generation. If `None` the method initializes it with
`bos_token_id` and a batch size of 1. `bos_token_id` and a batch size of 1.
max_length (`int`, *optional*, defaults to 20): max_length (`int`, *optional*, defaults to `model.config.max_length`):
The maximum length of the sequence to be generated. The maximum length the generated tokens can have. Corresponds to the length of the input prompt +
`max_new_tokens`. In general, prefer the use of `max_new_tokens`, which ignores the number of tokens in
the prompt.
max_new_tokens (`int`, *optional*):
The maximum numbers of tokens to generate, ignoring the number of tokens in the prompt.
min_length (`int`, *optional*, defaults to 10): min_length (`int`, *optional*, defaults to 10):
The minimum length of the sequence to be generated. The minimum length of the sequence to be generated.
do_sample (`bool`, *optional*, defaults to `False`): do_sample (`bool`, *optional*, defaults to `False`):
...@@ -1474,8 +1486,6 @@ class TFGenerationMixin: ...@@ -1474,8 +1486,6 @@ class TFGenerationMixin:
outputs = model.generate(input_ids=input_ids, max_length=100, do_sample=True, bad_words_ids=bad_words_ids) outputs = model.generate(input_ids=input_ids, max_length=100, do_sample=True, bad_words_ids=bad_words_ids)
```""" ```"""
# 1. Set generation parameters if not already defined # 1. Set generation parameters if not already defined
max_length = max_length if max_length is not None else self.config.max_length
min_length = min_length if min_length is not None else self.config.min_length
length_penalty = length_penalty if length_penalty is not None else self.config.length_penalty length_penalty = length_penalty if length_penalty is not None else self.config.length_penalty
early_stopping = early_stopping if early_stopping is not None else self.config.early_stopping early_stopping = early_stopping if early_stopping is not None else self.config.early_stopping
...@@ -1514,12 +1524,6 @@ class TFGenerationMixin: ...@@ -1514,12 +1524,6 @@ class TFGenerationMixin:
logger.warning(f"Setting `pad_token_id` to {eos_token_id} (first `eos_token_id`) to generate sequence") logger.warning(f"Setting `pad_token_id` to {eos_token_id} (first `eos_token_id`) to generate sequence")
pad_token_id = eos_token_id pad_token_id = eos_token_id
if min_length is not None and min_length > max_length:
raise ValueError(
f"Unfeasable length constraints: the minimum length ({min_length}) is larger than the maximum "
f"length ({max_length})"
)
use_xla = not tf.executing_eagerly() use_xla = not tf.executing_eagerly()
if use_xla and not self.supports_xla_generation: if use_xla and not self.supports_xla_generation:
raise ValueError( raise ValueError(
...@@ -1561,21 +1565,49 @@ class TFGenerationMixin: ...@@ -1561,21 +1565,49 @@ class TFGenerationMixin:
model_kwargs=model_kwargs, model_kwargs=model_kwargs,
) )
if input_ids.shape[-1] >= max_length: # 5. Prepare `max_length` depending on other stopping criteria.
input_ids_seq_length = input_ids.shape[-1]
if max_length is None and max_new_tokens is None:
warnings.warn(
"Neither `max_length` nor `max_new_tokens` have been set, `max_length` will default to "
f"{self.config.max_length} (`self.config.max_length`). Controlling `max_length` via the config is "
"deprecated and `max_length` will be removed from the config in v5 of Transformers -- we recommend "
"using `max_new_tokens` to control the maximum length of the generation.",
UserWarning,
)
elif max_length is None and max_new_tokens is not None:
max_length = max_new_tokens + input_ids_seq_length
elif max_length is not None and max_new_tokens is not None:
raise ValueError( raise ValueError(
f"The context has {input_ids.shape[-1]} number of tokens, " "Both `max_new_tokens` and `max_length` have been set but they serve the same purpose -- setting a"
f"but `max_length` is only {max_length}. " " limit to the generated output length. Remove one of those arguments. Please refer to the"
"Please make sure that `max_length` is bigger than the number of tokens, " " documentation for more information. "
"by setting either `generate(max_length=...,...)` or `config.max_length = ...`" "(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)"
)
# default to config if still None
max_length = max_length if max_length is not None else self.config.max_length
min_length = min_length if min_length is not None else self.config.min_length
if min_length is not None and min_length > max_length:
raise ValueError(
f"Unfeasable length constraints: the minimum length ({min_length}) is larger than the maximum "
f"length ({max_length})"
)
if input_ids_seq_length >= max_length:
input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
logger.warning(
f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
f" {max_length}. This can lead to unexpected behavior. You should consider increasing"
"`max_new_tokens`."
) )
# 5. determine generation mode # 6. determine generation mode
# TODO(Matt, Joao, Patrick) - add more use cases here # TODO(Matt, Joao, Patrick) - add more use cases here
is_greedy_gen_mode = (num_beams == 1) and do_sample is False is_greedy_gen_mode = (num_beams == 1) and do_sample is False
is_sample_gen_mode = (num_beams == 1) and do_sample is True is_sample_gen_mode = (num_beams == 1) and do_sample is True
is_beam_gen_mode = (num_beams > 1) and do_sample is False is_beam_gen_mode = (num_beams > 1) and do_sample is False
# 6. prepare distribution pre_processing samplers # 7. prepare distribution pre_processing samplers
logits_processor = self._get_logits_processor( logits_processor = self._get_logits_processor(
repetition_penalty=repetition_penalty, repetition_penalty=repetition_penalty,
no_repeat_ngram_size=no_repeat_ngram_size, no_repeat_ngram_size=no_repeat_ngram_size,
...@@ -1587,13 +1619,13 @@ class TFGenerationMixin: ...@@ -1587,13 +1619,13 @@ class TFGenerationMixin:
forced_eos_token_id=forced_eos_token_id, forced_eos_token_id=forced_eos_token_id,
) )
# 7. go into different generation modes # 8. go into different generation modes
if is_greedy_gen_mode: if is_greedy_gen_mode:
if num_return_sequences > 1: if num_return_sequences > 1:
raise ValueError( raise ValueError(
f"num_return_sequences has to be 1, but is {num_return_sequences} when doing greedy search." f"num_return_sequences has to be 1, but is {num_return_sequences} when doing greedy search."
) )
# 8. run greedy search # 9. run greedy search
return self.greedy_search( return self.greedy_search(
input_ids, input_ids,
max_length=max_length, max_length=max_length,
...@@ -1605,10 +1637,10 @@ class TFGenerationMixin: ...@@ -1605,10 +1637,10 @@ class TFGenerationMixin:
**model_kwargs, **model_kwargs,
) )
elif is_sample_gen_mode: elif is_sample_gen_mode:
# 8. prepare logits warper # 9. prepare logits warper
logits_warper = self._get_logits_warper(top_k=top_k, top_p=top_p, temperature=temperature) logits_warper = self._get_logits_warper(top_k=top_k, top_p=top_p, temperature=temperature)
# 9. expand input_ids with `num_return_sequences` additional sequences per batch # 10. expand input_ids with `num_return_sequences` additional sequences per batch
input_ids, model_kwargs = self._expand_inputs_for_generation( input_ids, model_kwargs = self._expand_inputs_for_generation(
input_ids, input_ids,
expand_size=num_return_sequences, expand_size=num_return_sequences,
...@@ -1616,7 +1648,7 @@ class TFGenerationMixin: ...@@ -1616,7 +1648,7 @@ class TFGenerationMixin:
**model_kwargs, **model_kwargs,
) )
# 10. run sample # 11. run sample
return self.sample( return self.sample(
input_ids, input_ids,
logits_processor=logits_processor, logits_processor=logits_processor,
...@@ -1637,7 +1669,7 @@ class TFGenerationMixin: ...@@ -1637,7 +1669,7 @@ class TFGenerationMixin:
f"num_beams >= num_return_sequences, got {num_beams} and {num_return_sequences} (respectivelly)" f"num_beams >= num_return_sequences, got {num_beams} and {num_return_sequences} (respectivelly)"
) )
# 8. broadcast inputs to the desired number of beams # 9. broadcast inputs to the desired number of beams
input_ids = self._expand_to_num_beams(input_ids, num_beams=num_beams) input_ids = self._expand_to_num_beams(input_ids, num_beams=num_beams)
if "encoder_outputs" in model_kwargs: if "encoder_outputs" in model_kwargs:
...@@ -1650,7 +1682,7 @@ class TFGenerationMixin: ...@@ -1650,7 +1682,7 @@ class TFGenerationMixin:
model_kwargs["attention_mask"], num_beams=num_beams model_kwargs["attention_mask"], num_beams=num_beams
) )
# 9. run beam search # 10. run beam search
return self.beam_search( return self.beam_search(
input_ids, input_ids,
max_length=max_length, max_length=max_length,
......
...@@ -70,8 +70,8 @@ class GreedySearchDecoderOnlyOutput(ModelOutput): ...@@ -70,8 +70,8 @@ class GreedySearchDecoderOnlyOutput(ModelOutput):
if all batches finished early due to the `eos_token_id`. if all batches finished early due to the `eos_token_id`.
scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax) Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
at each generation step. `(max_length-input_ids.shape[-1],)`-shaped tuple of `torch.FloatTensor` with each at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for
tensor of shape `(batch_size, config.vocab_size)`). each generated token), with each tensor of shape `(batch_size, config.vocab_size)`.
attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`. `torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
...@@ -100,8 +100,8 @@ class GreedySearchEncoderDecoderOutput(ModelOutput): ...@@ -100,8 +100,8 @@ class GreedySearchEncoderDecoderOutput(ModelOutput):
if all batches finished early due to the `eos_token_id`. if all batches finished early due to the `eos_token_id`.
scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax) Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
at each generation step. `(max_length-1,)`-shaped tuple of `torch.FloatTensor` with each tensor of shape at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for
`(batch_size, config.vocab_size)`). each generated token), with each tensor of shape `(batch_size, config.vocab_size)`.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer of the decoder) of shape `(batch_size, num_heads, Tuple of `torch.FloatTensor` (one for each layer of the decoder) of shape `(batch_size, num_heads,
sequence_length, sequence_length)`. sequence_length, sequence_length)`.
...@@ -140,8 +140,8 @@ class SampleDecoderOnlyOutput(ModelOutput): ...@@ -140,8 +140,8 @@ class SampleDecoderOnlyOutput(ModelOutput):
if all batches finished early due to the `eos_token_id`. if all batches finished early due to the `eos_token_id`.
scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax) Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
at each generation step. `(max_length-input_ids.shape[-1],)`-shaped tuple of `torch.FloatTensor` with each at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for
tensor of shape `(batch_size*num_return_sequences, config.vocab_size)`). each generated token), with each tensor of shape `(batch_size*num_return_sequences, config.vocab_size)`.
attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`torch.FloatTensor` of shape `(num_return_sequences*batch_size, num_heads, generated_length, `torch.FloatTensor` of shape `(num_return_sequences*batch_size, num_heads, generated_length,
...@@ -171,8 +171,8 @@ class SampleEncoderDecoderOutput(ModelOutput): ...@@ -171,8 +171,8 @@ class SampleEncoderDecoderOutput(ModelOutput):
if all batches finished early due to the `eos_token_id`. if all batches finished early due to the `eos_token_id`.
scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax) Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
at each generation step. `(max_length-1,)`-shaped tuple of `torch.FloatTensor` with each tensor of shape at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for
`(batch_size*num_return_sequences, config.vocab_size)`). each generated token), with each tensor of shape `(batch_size*num_return_sequences, config.vocab_size)`.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`): encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer of the decoder) of shape Tuple of `torch.FloatTensor` (one for each layer of the decoder) of shape
`(batch_size*num_return_sequences, num_heads, sequence_length, sequence_length)`. `(batch_size*num_return_sequences, num_heads, sequence_length, sequence_length)`.
...@@ -214,8 +214,8 @@ class BeamSearchDecoderOnlyOutput(ModelOutput): ...@@ -214,8 +214,8 @@ class BeamSearchDecoderOnlyOutput(ModelOutput):
scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
Beam transition scores for each vocabulary token at each generation step. Beam transition scores consisting Beam transition scores for each vocabulary token at each generation step. Beam transition scores consisting
of log probabilities of tokens conditioned on log softmax of previously generated tokens in this beam. of log probabilities of tokens conditioned on log softmax of previously generated tokens in this beam.
`(max_length-input_ids.shape[-1],)`-shaped tuple of `torch.FloatTensor` with each tensor of shape Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for each generated token),
`(batch_size*num_beams*num_return_sequences, config.vocab_size)`). with each tensor of shape `(batch_size*num_beams*num_return_sequences, config.vocab_size)`.
beam_indices (`tuple(tuple(torch.LongTensor))`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): beam_indices (`tuple(tuple(torch.LongTensor))`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
Beam indices of generated token id at each generation step. `torch.LongTensor` of shape Beam indices of generated token id at each generation step. `torch.LongTensor` of shape
`(batch_size*num_return_sequences, input_ids.shape[-1])`. `(batch_size*num_return_sequences, input_ids.shape[-1])`.
...@@ -251,8 +251,8 @@ class BeamSearchEncoderDecoderOutput(ModelOutput): ...@@ -251,8 +251,8 @@ class BeamSearchEncoderDecoderOutput(ModelOutput):
scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
Beam transition scores for each vocabulary token at each generation step. Beam transition scores consisting Beam transition scores for each vocabulary token at each generation step. Beam transition scores consisting
of log probabilities of tokens conditioned on log softmax of previously generated tokens in this beam. of log probabilities of tokens conditioned on log softmax of previously generated tokens in this beam.
`(max_length-1,)`-shaped tuple of `torch.FloatTensor` with each tensor of shape `(batch_size*num_beams, Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for each generated token),
config.vocab_size)`). with each tensor of shape `(batch_size*num_beams, config.vocab_size)`.
beam_indices (`tuple(tuple(torch.LongTensor))`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): beam_indices (`tuple(tuple(torch.LongTensor))`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
Beam indices of generated token id at each generation step. `torch.LongTensor` of shape Beam indices of generated token id at each generation step. `torch.LongTensor` of shape
`(batch_size*num_return_sequences, max_length-1)`. `(batch_size*num_return_sequences, max_length-1)`.
...@@ -300,8 +300,8 @@ class BeamSampleDecoderOnlyOutput(ModelOutput): ...@@ -300,8 +300,8 @@ class BeamSampleDecoderOnlyOutput(ModelOutput):
scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
Beam transition scores for each vocabulary token at each generation step. Beam transition scores consisting Beam transition scores for each vocabulary token at each generation step. Beam transition scores consisting
of log probabilities of tokens conditioned on log softmax of previously generated tokens in this beam. of log probabilities of tokens conditioned on log softmax of previously generated tokens in this beam.
`(max_length-input_ids.shape[-1],)`-shaped tuple of `torch.FloatTensor` with each tensor of shape Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for each generated token),
`(batch_size*num_beams*num_return_sequences, config.vocab_size)`). with each tensor of shape `(batch_size*num_beams*num_return_sequences, config.vocab_size)`.
beam_indices (`tuple(tuple(torch.LongTensor))`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): beam_indices (`tuple(tuple(torch.LongTensor))`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
Beam indices of generated token id at each generation step. `torch.LongTensor` of shape Beam indices of generated token id at each generation step. `torch.LongTensor` of shape
`(batch_size*num_return_sequences, input_ids.shape[-1])`. `(batch_size*num_return_sequences, input_ids.shape[-1])`.
...@@ -337,8 +337,8 @@ class BeamSampleEncoderDecoderOutput(ModelOutput): ...@@ -337,8 +337,8 @@ class BeamSampleEncoderDecoderOutput(ModelOutput):
scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
Beam transition scores for each vocabulary token at each generation step. Beam transition scores consisting Beam transition scores for each vocabulary token at each generation step. Beam transition scores consisting
of log probabilities of tokens conditioned on log softmax of previously generated tokens in this beam. of log probabilities of tokens conditioned on log softmax of previously generated tokens in this beam.
`(max_length-1,)`-shaped tuple of `torch.FloatTensor` with each tensor of shape `(batch_size*num_beams, Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for each generated token),
config.vocab_size)`). with each tensor of shape `(batch_size*num_beams, config.vocab_size)`).
beam_indices (`torch.LongTensor`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`): beam_indices (`torch.LongTensor`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
Beam indices of generated token id at each generation step. `torch.LongTensor` of shape Beam indices of generated token id at each generation step. `torch.LongTensor` of shape
`(batch_size*num_return_sequences, max_length-1)`. `(batch_size*num_return_sequences, max_length-1)`.
...@@ -923,10 +923,11 @@ class GenerationMixin: ...@@ -923,10 +923,11 @@ class GenerationMixin:
should of in the format of `input_ids`. For encoder-decoder models *inputs* can represent any of should of in the format of `input_ids`. For encoder-decoder models *inputs* can represent any of
`input_ids`, `input_values`, `input_features`, or `pixel_values`. `input_ids`, `input_values`, `input_features`, or `pixel_values`.
max_length (`int`, *optional*, defaults to `model.config.max_length`): max_length (`int`, *optional*, defaults to `model.config.max_length`):
The maximum length of the sequence to be generated. The maximum length the generated tokens can have. Corresponds to the length of the input prompt +
max_new_tokens (`int`, *optional*, defaults to None): `max_new_tokens`. In general, prefer the use of `max_new_tokens`, which ignores the number of tokens in
The maximum numbers of tokens to generate, ignore the current number of tokens. Use either the prompt.
`max_new_tokens` or `max_length` but not both, they serve the same purpose. max_new_tokens (`int`, *optional*):
The maximum numbers of tokens to generate, ignoring the number of tokens in the prompt.
min_length (`int`, *optional*, defaults to 10): min_length (`int`, *optional*, defaults to 10):
The minimum length of the sequence to be generated. The minimum length of the sequence to be generated.
do_sample (`bool`, *optional*, defaults to `False`): do_sample (`bool`, *optional*, defaults to `False`):
...@@ -974,7 +975,7 @@ class GenerationMixin: ...@@ -974,7 +975,7 @@ class GenerationMixin:
where one can allow different forms of each word. where one can allow different forms of each word.
num_return_sequences(`int`, *optional*, defaults to 1): num_return_sequences(`int`, *optional*, defaults to 1):
The number of independently computed returned sequences for each element in the batch. The number of independently computed returned sequences for each element in the batch.
max_time(`float`, *optional*, defaults to None): max_time(`float`, *optional*):
The maximum amount of time you allow the computation to run for in seconds. generation will still The maximum amount of time you allow the computation to run for in seconds. generation will still
finish the current pass after allocated time has been passed. finish the current pass after allocated time has been passed.
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
...@@ -1195,20 +1196,25 @@ class GenerationMixin: ...@@ -1195,20 +1196,25 @@ class GenerationMixin:
# if decoder-only then inputs_tensor has to be `input_ids` # if decoder-only then inputs_tensor has to be `input_ids`
input_ids = inputs_tensor input_ids = inputs_tensor
# 5. Prepare `max_length` depending on other stopping criteria.
input_ids_seq_length = input_ids.shape[-1] input_ids_seq_length = input_ids.shape[-1]
if max_length is None and max_new_tokens is None:
# 5. Prepare `max_length` depending on other stopping criteria
# if `max_new_tokens` is passed, but not `max_length` -> set `max_length = max_new_tokens`
if max_length is None and max_new_tokens is not None:
max_length = max_new_tokens + input_ids_seq_length
elif max_length is not None and max_new_tokens is not None:
# Both are set, this is odd, raise a warning
warnings.warn( warnings.warn(
"Both `max_length` and `max_new_tokens` have been set " "Neither `max_length` nor `max_new_tokens` have been set, `max_length` will default to "
f"but they serve the same purpose. `max_length` {max_length} " f"{self.config.max_length} (`self.config.max_length`). Controlling `max_length` via the config is "
f"will take priority over `max_new_tokens` {max_new_tokens}.", "deprecated and `max_length` will be removed from the config in v5 of Transformers -- we recommend "
"using `max_new_tokens` to control the maximum length of the generation.",
UserWarning, UserWarning,
) )
elif max_length is None and max_new_tokens is not None:
max_length = max_new_tokens + input_ids_seq_length
elif max_length is not None and max_new_tokens is not None:
raise ValueError(
"Both `max_new_tokens` and `max_length` have been set but they serve the same purpose -- setting a"
" limit to the generated output length. Remove one of those arguments. Please refer to the"
" documentation for more information. "
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)"
)
# default to config if still None # default to config if still None
max_length = max_length if max_length is not None else self.config.max_length max_length = max_length if max_length is not None else self.config.max_length
min_length = min_length if min_length is not None else self.config.min_length min_length = min_length if min_length is not None else self.config.min_length
...@@ -1221,9 +1227,9 @@ class GenerationMixin: ...@@ -1221,9 +1227,9 @@ class GenerationMixin:
if input_ids_seq_length >= max_length: if input_ids_seq_length >= max_length:
input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids" input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
logger.warning( logger.warning(
f"Input length of {input_ids_string} is {input_ids_seq_length}, but ``max_length`` is set to" f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
f" {max_length}. This can lead to unexpected behavior. You should consider increasing" f" {max_length}. This can lead to unexpected behavior. You should consider increasing "
" ``config.max_length`` or ``max_length``." "`max_new_tokens`."
) )
# 6. determine generation mode # 6. determine generation mode
......
...@@ -2023,8 +2023,8 @@ class GenerationIntegrationTests(unittest.TestCase): ...@@ -2023,8 +2023,8 @@ class GenerationIntegrationTests(unittest.TestCase):
# 1 BOS + 20 + 3 new tokens # 1 BOS + 20 + 3 new tokens
self.assertEqual(list(outputs.shape), [1, 24]) self.assertEqual(list(outputs.shape), [1, 24])
# max_new_tokens and max_length serve the same purpose and should not be used together. # max_new_tokens and max_length serve the same purpose and must not be used together.
with self.assertWarns(UserWarning): with self.assertRaises(ValueError):
bart_model.generate(decoder_input_ids=input_ids, max_new_tokens=10, max_length=20) bart_model.generate(decoder_input_ids=input_ids, max_new_tokens=10, max_length=20)
def test_max_new_tokens_decoder_only(self): def test_max_new_tokens_decoder_only(self):
...@@ -2050,8 +2050,8 @@ class GenerationIntegrationTests(unittest.TestCase): ...@@ -2050,8 +2050,8 @@ class GenerationIntegrationTests(unittest.TestCase):
# 1 BOS token + 23 new tokens # 1 BOS token + 23 new tokens
self.assertEqual(list(outputs.shape), [1, 24]) self.assertEqual(list(outputs.shape), [1, 24])
# max_new_tokens and max_length serve the same purpose and should not be used together. # max_new_tokens and max_length serve the same purpose and must not be used together.
with self.assertWarns(UserWarning): with self.assertRaises(ValueError):
gpt2_model.generate(decoder_input_ids=input_ids, max_new_tokens=10, max_length=20) gpt2_model.generate(decoder_input_ids=input_ids, max_new_tokens=10, max_length=20)
def test_encoder_decoder_generate_with_inputs_embeds(self): def test_encoder_decoder_generate_with_inputs_embeds(self):
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment