optimization.py 8.99 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch optimization for BERT model."""

thomwolf's avatar
thomwolf committed
17
import logging
18
import math
thomwolf's avatar
thomwolf committed
19

20
21
import torch
from torch.optim import Optimizer
thomwolf's avatar
thomwolf committed
22
from torch.optim.lr_scheduler import LambdaLR
lukovnikov's avatar
lukovnikov committed
23
24

logger = logging.getLogger(__name__)
25

thomwolf's avatar
thomwolf committed
26
class ConstantLRSchedule(LambdaLR):
thomwolf's avatar
thomwolf committed
27
28
    """ Constant learning rate schedule.
    """
thomwolf's avatar
thomwolf committed
29
    def __init__(self, optimizer, last_epoch=-1):
thomwolf's avatar
thomwolf committed
30
        super(ConstantLRSchedule, self).__init__(optimizer, lambda _: 1.0, last_epoch=last_epoch)
lukovnikov's avatar
lukovnikov committed
31

thomwolf's avatar
thomwolf committed
32
33
34

class WarmupConstantSchedule(LambdaLR):
    """ Linear warmup and then constant.
35
36
37
        Multiplies the learning rate defined in the optimizer by a dynamic variable determined by the current step.
        Linearly increases the multiplicative variable from 0. to 1. over `warmup_steps` training steps.
        Keeps multiplicative variable equal to 1. after warmup_steps.
lukovnikov's avatar
lukovnikov committed
38
    """
thomwolf's avatar
thomwolf committed
39
    def __init__(self, optimizer, warmup_steps, last_epoch=-1):
40
41
        self.warmup_steps = warmup_steps
        super(WarmupConstantSchedule, self).__init__(optimizer, self.lr_lambda, last_epoch=last_epoch)
lukovnikov's avatar
lukovnikov committed
42

43
44
45
46
    def lr_lambda(self, step):
        if step < self.warmup_steps:
            return float(step) / float(max(1.0, self.warmup_steps))
        return 1.
lukovnikov's avatar
lukovnikov committed
47

thomwolf's avatar
thomwolf committed
48
49
50

class WarmupLinearSchedule(LambdaLR):
    """ Linear warmup and then linear decay.
51
52
53
        Multiplies the learning rate defined in the optimizer by a dynamic variable determined by the current step.
        Linearly increases the multiplicative variable from 0. to 1. over `warmup_steps` training steps.
        Linearly decreases the multiplicative variable from 1. to 0. over remaining `t_total - warmup_steps` steps.
lukovnikov's avatar
lukovnikov committed
54
    """
thomwolf's avatar
thomwolf committed
55
    def __init__(self, optimizer, warmup_steps, t_total, last_epoch=-1):
56
57
58
        self.warmup_steps = warmup_steps
        self.t_total = t_total
        super(WarmupLinearSchedule, self).__init__(optimizer, self.lr_lambda, last_epoch=last_epoch)
lukovnikov's avatar
lukovnikov committed
59

60
61
62
63
    def lr_lambda(self, step):
        if step < self.warmup_steps:
            return float(step) / float(max(1, self.warmup_steps))
        return max(0.0, float(self.t_total - step) / float(max(1.0, self.t_total - self.warmup_steps)))
lukovnikov's avatar
lukovnikov committed
64

thomwolf's avatar
thomwolf committed
65

thomwolf's avatar
thomwolf committed
66
67
class WarmupCosineSchedule(LambdaLR):
    """ Linear warmup and then cosine decay.
68
69
70
71
        Multiplies the learning rate defined in the optimizer by a dynamic variable determined by the current step.
        Linearly increases the multiplicative variable from 0. to 1. over `warmup_steps` training steps.
        Decreases the multiplicative variable from 1. to 0. over remaining `t_total - warmup_steps` steps following a cosine curve.
        If `cycles` (default=0.5) is different from default, then the multiplicative variable follows cosine function after warmup.
lukovnikov's avatar
lukovnikov committed
72
    """
thomwolf's avatar
thomwolf committed
73
    def __init__(self, optimizer, warmup_steps, t_total, cycles=.5, last_epoch=-1):
74
75
76
77
        self.warmup_steps = warmup_steps
        self.t_total = t_total
        self.cycles = cycles
        super(WarmupCosineSchedule, self).__init__(optimizer, self.lr_lambda, last_epoch=last_epoch)
thomwolf's avatar
thomwolf committed
78

79
80
81
82
83
84
    def lr_lambda(self, step):
        if step < self.warmup_steps:
            return float(step) / float(max(1.0, self.warmup_steps))
        # progress after warmup
        progress = float(step - self.warmup_steps) / float(max(1, self.t_total - self.warmup_steps))
        return max(0.0, 0.5 * (1. + math.cos(math.pi * float(self.cycles) * 2.0 * progress)))
lukovnikov's avatar
lukovnikov committed
85

thomwolf's avatar
thomwolf committed
86

thomwolf's avatar
thomwolf committed
87
88
class WarmupCosineWithHardRestartsSchedule(LambdaLR):
    """ Linear warmup and then cosine cycles with hard restarts.
89
90
91
        Multiplies the learning rate defined in the optimizer by a dynamic variable determined by the current step.
        Linearly increases the multiplicative variable from 0. to 1. over `warmup_steps` training steps.
        If `cycles` (default=1.) is different from default, learning rate  follows `cycles` times a cosine decaying
thomwolf's avatar
thomwolf committed
92
        learning rate (with hard restarts).
lukovnikov's avatar
lukovnikov committed
93
    """
thomwolf's avatar
thomwolf committed
94
    def __init__(self, optimizer, warmup_steps, t_total, cycles=1., last_epoch=-1):
95
96
97
98
99
100
101
102
103
104
105
106
107
        self.warmup_steps = warmup_steps
        self.t_total = t_total
        self.cycles = cycles
        super(WarmupCosineWithHardRestartsSchedule, self).__init__(optimizer, self.lr_lambda, last_epoch=last_epoch)

    def lr_lambda(self, step):
        if step < self.warmup_steps:
            return float(step) / float(max(1, self.warmup_steps))
        # progress after warmup
        progress = float(step - self.warmup_steps) / float(max(1, self.t_total - self.warmup_steps))
        if progress >= 1.0:
            return 0.0
        return max(0.0, 0.5 * (1. + math.cos(math.pi * ((float(self.cycles) * progress) % 1.0))))
lukovnikov's avatar
lukovnikov committed
108

109
110


thomwolf's avatar
thomwolf committed
111
112
class AdamW(Optimizer):
    """ Implements Adam algorithm with weight decay fix.
113
114

    Parameters:
thomwolf's avatar
thomwolf committed
115
116
117
118
119
        lr (float): learning rate. Default 1e-3.
        betas (tuple of 2 floats): Adams beta parameters (b1, b2). Default: (0.9, 0.999)
        eps (float): Adams epsilon. Default: 1e-6
        weight_decay (float): Weight decay. Default: 0.0
        correct_bias (bool): can be set to False to avoid correcting bias in Adam (e.g. like in Bert TF repository). Default True.
120
    """
thomwolf's avatar
thomwolf committed
121
    def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-6, weight_decay=0.0, correct_bias=True):
thomwolf's avatar
thomwolf committed
122
        if lr < 0.0:
thomwolf's avatar
thomwolf committed
123
            raise ValueError("Invalid learning rate: {} - should be >= 0.0".format(lr))
thomwolf's avatar
thomwolf committed
124
125
126
        if not 0.0 <= betas[0] < 1.0:
            raise ValueError("Invalid beta parameter: {} - should be in [0.0, 1.0[".format(betas[0]))
        if not 0.0 <= betas[1]  < 1.0:
thomwolf's avatar
thomwolf committed
127
            raise ValueError("Invalid beta parameter: {} - should be in [0.0, 1.0[".format(betas[1]))
thomwolf's avatar
thomwolf committed
128
        if not 0.0 <= eps:
thomwolf's avatar
thomwolf committed
129
            raise ValueError("Invalid epsilon value: {} - should be >= 0.0".format(eps))
thomwolf's avatar
thomwolf committed
130
131
        defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay,
                        correct_bias=correct_bias)
thomwolf's avatar
thomwolf committed
132
        super(AdamW, self).__init__(params, defaults)
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

    def step(self, closure=None):
        """Performs a single optimization step.

        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            loss = closure()

        for group in self.param_groups:
            for p in group['params']:
                if p.grad is None:
                    continue
                grad = p.grad.data
                if grad.is_sparse:
                    raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead')

                state = self.state[p]

                # State initialization
                if len(state) == 0:
                    state['step'] = 0
                    # Exponential moving average of gradient values
thomwolf's avatar
thomwolf committed
159
                    state['exp_avg'] = torch.zeros_like(p.data)
160
                    # Exponential moving average of squared gradient values
thomwolf's avatar
thomwolf committed
161
                    state['exp_avg_sq'] = torch.zeros_like(p.data)
162

thomwolf's avatar
thomwolf committed
163
164
                exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
                beta1, beta2 = group['betas']
165

thomwolf's avatar
thomwolf committed
166
                state['step'] += 1
167
168

                # Decay the first and second moment running average coefficient
thomwolf's avatar
thomwolf committed
169
                # In-place operations to update the averages at the same time
thomwolf's avatar
thomwolf committed
170
171
                exp_avg.mul_(beta1).add_(1.0 - beta1, grad)
                exp_avg_sq.mul_(beta2).addcmul_(1.0 - beta2, grad, grad)
thomwolf's avatar
thomwolf committed
172
173
174
175
                denom = exp_avg_sq.sqrt().add_(group['eps'])

                step_size = group['lr']
                if group['correct_bias']:  # No bias correction for Bert
thomwolf's avatar
thomwolf committed
176
177
                    bias_correction1 = 1.0 - beta1 ** state['step']
                    bias_correction2 = 1.0 - beta2 ** state['step']
thomwolf's avatar
thomwolf committed
178
179
180
                    step_size = step_size * math.sqrt(bias_correction2) / bias_correction1

                p.data.addcdiv_(-step_size, exp_avg, denom)
181
182
183
184
185

                # Just adding the square of the weights to the loss function is *not*
                # the correct way of using L2 regularization/weight decay with Adam,
                # since that will interact with the m and v parameters in strange ways.
                #
thomwolf's avatar
thomwolf committed
186
                # Instead we want to decay the weights in a manner that doesn't interact
187
188
                # with the m/v parameters. This is equivalent to adding the square
                # of the weights to the loss with plain (non-momentum) SGD.
thomwolf's avatar
thomwolf committed
189
                # Add weight decay at the end (fixed version)
thomwolf's avatar
thomwolf committed
190
                if group['weight_decay'] > 0.0:
thomwolf's avatar
thomwolf committed
191
                    p.data.add_(-group['lr'] * group['weight_decay'], p.data)
192
193

        return loss