modeling_tf_xlm.py 36 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright 2019-present, Facebook, Inc and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TF 2.0 XLM model.
"""
from __future__ import absolute_import, division, print_function, unicode_literals

import logging
import math
21
import os
thomwolf's avatar
thomwolf committed
22
23
24
25
26
27
28
29

import itertools
import numpy as np
import tensorflow as tf

from .configuration_xlm import XLMConfig
from .modeling_tf_utils import TFPreTrainedModel, TFSharedEmbeddings, TFSequenceSummary, shape_list
from .file_utils import add_start_docstrings
30
from .modeling_tf_pytorch_utils import load_pytorch_checkpoint_in_tf2_model
thomwolf's avatar
thomwolf committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

logger = logging.getLogger(__name__)

TF_XLM_PRETRAINED_MODEL_ARCHIVE_MAP = {
    'xlm-mlm-en-2048': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-en-2048-tf_model.h5",
    'xlm-mlm-ende-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-ende-1024-tf_model.h5",
    'xlm-mlm-enfr-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enfr-1024-tf_model.h5",
    'xlm-mlm-enro-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enro-1024-tf_model.h5",
    'xlm-mlm-tlm-xnli15-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-tlm-xnli15-1024-tf_model.h5",
    'xlm-mlm-xnli15-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-xnli15-1024-tf_model.h5",
    'xlm-clm-enfr-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-clm-enfr-1024-tf_model.h5",
    'xlm-clm-ende-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-clm-ende-1024-tf_model.h5",
    'xlm-mlm-17-1280': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-17-1280-tf_model.h5",
    'xlm-mlm-100-1280': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-100-1280-tf_model.h5",
}


48
49
def load_xlm_pt_weights_in_tf2(tf_model, pytorch_checkpoint_path):
    # build the network
thomwolf's avatar
thomwolf committed
50
51
52
53
54
55
    inputs_list = tf.constant([[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]])
    attns_list = tf.constant([[1, 1, 0, 0, 1], [1, 1, 1, 0, 0], [1, 0, 0, 1, 1]])
    if tf_model.config.use_lang_emb and tf_model.config.n_langs > 1:
        langs_list = tf.constant([[1, 1, 0, 0, 1], [1, 1, 1, 0, 0], [1, 0, 0, 1, 1]])
    else:
        langs_list = None
thomwolf's avatar
hot fix  
thomwolf committed
56
    tf_inputs = [inputs_list, attns_list, langs_list]
57
58
    tfo = tf_model(tf_inputs, training=False)
    return load_pytorch_checkpoint_in_tf2_model(tf_model, pytorch_checkpoint_path, tf_inputs=tf_inputs)
thomwolf's avatar
thomwolf committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266


def create_sinusoidal_embeddings(n_pos, dim, out):
    position_enc = np.array([
        [pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)]
        for pos in range(n_pos)
    ])
    out[:, 0::2] = tf.constant(np.sin(position_enc[:, 0::2]))
    out[:, 1::2] = tf.constant(np.cos(position_enc[:, 1::2]))


def gelu(x):
    """ Gaussian Error Linear Unit.
    Original Implementation of the gelu activation function in Google Bert repo when initialy created.
        For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
        0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
        Also see https://arxiv.org/abs/1606.08415
    """
    cdf = 0.5 * (1.0 + tf.math.erf(x / tf.math.sqrt(2.0)))
    return x * cdf


def get_masks(slen, lengths, causal, padding_mask=None, dtype=tf.float32):
    """
    Generate hidden states mask, and optionally an attention mask.
    """
    bs = shape_list(lengths)[0]
    if padding_mask is not None:
        mask = padding_mask
    else:
        # assert lengths.max().item() <= slen
        alen = tf.range(slen)
        mask = tf.math.less(alen, lengths[:, tf.newaxis])

    # attention mask is the same as mask, or triangular inferior attention (causal)
    if causal:
        attn_mask = tf.less_equal(tf.tile(alen[tf.newaxis, tf.newaxis, :], (bs, slen, 1)),
                                  alen[tf.newaxis, :, tf.newaxis])
    else:
        attn_mask = mask

    # sanity check
    assert shape_list(mask) == [bs, slen]
    assert causal is False or shape_list(attn_mask) == [bs, slen, slen]

    mask = tf.cast(mask, dtype=dtype)
    attn_mask = tf.cast(attn_mask, dtype=dtype)

    return mask, attn_mask


class TFMultiHeadAttention(tf.keras.layers.Layer):

    NEW_ID = itertools.count()

    def __init__(self, n_heads, dim, config, **kwargs):
        super(TFMultiHeadAttention, self).__init__(**kwargs)
        self.layer_id = next(TFMultiHeadAttention.NEW_ID)
        self.output_attentions = config.output_attentions
        self.dim = dim
        self.n_heads = n_heads
        assert self.dim % self.n_heads == 0

        self.q_lin = tf.keras.layers.Dense(dim, name='q_lin')
        self.k_lin = tf.keras.layers.Dense(dim, name='k_lin')
        self.v_lin = tf.keras.layers.Dense(dim, name='v_lin')
        self.out_lin = tf.keras.layers.Dense(dim, name='out_lin')
        self.dropout = tf.keras.layers.Dropout(config.attention_dropout)
        self.pruned_heads = set()

    def prune_heads(self, heads):
        raise NotImplementedError

    def call(self, inputs, training=False):
        """
        Self-attention (if kv is None) or attention over source sentence (provided by kv).
        """
        input, mask, kv, cache, head_mask = inputs
        # Input is (bs, qlen, dim)
        # Mask is (bs, klen) (non-causal) or (bs, klen, klen)
        bs, qlen, dim = shape_list(input)
        if kv is None:
            klen = qlen if cache is None else cache['slen'] + qlen
        else:
            klen = shape_list(kv)[1]
        # assert dim == self.dim, 'Dimensions do not match: %s input vs %s configured' % (dim, self.dim)
        n_heads = self.n_heads
        dim_per_head = self.dim // n_heads
        mask_reshape = (bs, 1, qlen, klen) if len(shape_list(mask)) == 3 else (bs, 1, 1, klen)

        def shape(x):
            """  projection """
            return tf.transpose(tf.reshape(x, (bs, -1, self.n_heads, dim_per_head)), perm=(0, 2, 1, 3))

        def unshape(x):
            """  compute context """
            return tf.reshape(tf.transpose(x, perm=(0, 2, 1, 3)), (bs, -1, self.n_heads * dim_per_head))

        q = shape(self.q_lin(input))                                          # (bs, n_heads, qlen, dim_per_head)
        if kv is None:
            k = shape(self.k_lin(input))                                      # (bs, n_heads, qlen, dim_per_head)
            v = shape(self.v_lin(input))                                      # (bs, n_heads, qlen, dim_per_head)
        elif cache is None or self.layer_id not in cache:
            k = v = kv
            k = shape(self.k_lin(k))                                          # (bs, n_heads, qlen, dim_per_head)
            v = shape(self.v_lin(v))                                          # (bs, n_heads, qlen, dim_per_head)

        if cache is not None:
            if self.layer_id in cache:
                if kv is None:
                    k_, v_ = cache[self.layer_id]
                    k = tf.concat([k_, k], axis=2)                             # (bs, n_heads, klen, dim_per_head)
                    v = tf.concat([v_, v], axis=2)                             # (bs, n_heads, klen, dim_per_head)
                else:
                    k, v = cache[self.layer_id]
            cache[self.layer_id] = (k, v)

        q = q / math.sqrt(dim_per_head)                                       # (bs, n_heads, qlen, dim_per_head)
        scores = tf.matmul(q, k, transpose_b=True)                            # (bs, n_heads, qlen, klen)
        mask = tf.reshape(mask, mask_reshape)                           # (bs, n_heads, qlen, klen)
        # scores.masked_fill_(mask, -float('inf'))                            # (bs, n_heads, qlen, klen)
        scores = scores - 1e30 * (1.0 - mask)

        weights = tf.nn.softmax(scores, axis=-1)                              # (bs, n_heads, qlen, klen)
        weights = self.dropout(weights, training=training)                    # (bs, n_heads, qlen, klen)

        # Mask heads if we want to
        if head_mask is not None:
            weights = weights * head_mask

        context = tf.matmul(weights, v)                                    # (bs, n_heads, qlen, dim_per_head)
        context = unshape(context)                                            # (bs, qlen, dim)

        outputs = (self.out_lin(context),)
        if self.output_attentions:
            outputs = outputs + (weights,)
        return outputs


class TFTransformerFFN(tf.keras.layers.Layer):

    def __init__(self, in_dim, dim_hidden, out_dim, config, **kwargs):
        super(TFTransformerFFN, self).__init__(**kwargs)
        self.lin1 = tf.keras.layers.Dense(dim_hidden, name='lin1')
        self.lin2 = tf.keras.layers.Dense(out_dim, name='lin2')
        self.act = tf.keras.layers.Activation(gelu) if config.gelu_activation else tf.keras.activations.relu
        self.dropout = tf.keras.layers.Dropout(config.dropout)

    def call(self, input, training=False):
        x = self.lin1(input)
        x = self.act(x)
        x = self.lin2(x)
        x = self.dropout(x, training=training)
        return x


class TFXLMMainLayer(tf.keras.layers.Layer):
    def __init__(self, config, **kwargs):
        super(TFXLMMainLayer, self).__init__(**kwargs)
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states

        # encoder / decoder, output layer
        self.is_encoder = config.is_encoder
        self.is_decoder = not config.is_encoder
        if self.is_decoder:
            raise NotImplementedError("Currently XLM can only be used as an encoder")
        # self.with_output = with_output
        self.causal = config.causal

        # dictionary / languages
        self.n_langs = config.n_langs
        self.use_lang_emb = config.use_lang_emb
        self.n_words = config.n_words
        self.eos_index = config.eos_index
        self.pad_index = config.pad_index
        # self.dico = dico
        # self.id2lang = config.id2lang
        # self.lang2id = config.lang2id
        # assert len(self.dico) == self.n_words
        # assert len(self.id2lang) == len(self.lang2id) == self.n_langs

        # model parameters
        self.dim = config.emb_dim       # 512 by default
        self.hidden_dim = self.dim * 4  # 2048 by default
        self.n_heads = config.n_heads   # 8 by default
        self.n_layers = config.n_layers
        assert self.dim % self.n_heads == 0, 'transformer dim must be a multiple of n_heads'

        # embeddings
        self.dropout = tf.keras.layers.Dropout(config.dropout)
        self.attention_dropout = tf.keras.layers.Dropout(config.attention_dropout)

        self.position_embeddings = tf.keras.layers.Embedding(config.max_position_embeddings, self.dim, name='position_embeddings')
        if config.sinusoidal_embeddings:
            raise NotImplementedError
            # create_sinusoidal_embeddings(config.max_position_embeddings, self.dim, out=self.position_embeddings.weight)
        if config.n_langs > 1 and config.use_lang_emb:
            self.lang_embeddings = tf.keras.layers.Embedding(self.n_langs, self.dim, name='lang_embeddings')
        self.embeddings = TFSharedEmbeddings(self.n_words, self.dim, name='embeddings')  # padding_idx=self.pad_index)
        self.layer_norm_emb = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name='layer_norm_emb')

        # transformer layers
        self.attentions = []
        self.layer_norm1 = []
        self.ffns = []
        self.layer_norm2 = []
        # if self.is_decoder:
267
268
        #     self.layer_norm15 = []
        #     self.encoder_attn = []
thomwolf's avatar
thomwolf committed
269
270

        for i in range(self.n_layers):
271
272
            self.attentions.append(TFMultiHeadAttention(self.n_heads, self.dim, config=config, name='attentions_._{}'.format(i)))
            self.layer_norm1.append(tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name='layer_norm1_._{}'.format(i)))
thomwolf's avatar
thomwolf committed
273
274
275
            # if self.is_decoder:
            #     self.layer_norm15.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps))
            #     self.encoder_attn.append(MultiHeadAttention(self.n_heads, self.dim, dropout=self.attention_dropout))
276
277
            self.ffns.append(TFTransformerFFN(self.dim, self.hidden_dim, self.dim, config=config, name='ffns_._{}'.format(i)))
            self.layer_norm2.append(tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name='layer_norm2_._{}'.format(i)))
thomwolf's avatar
thomwolf committed
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296

        if hasattr(config, "pruned_heads"):
            pruned_heads = config.pruned_heads.copy().items()
            config.pruned_heads = {}
            for layer, heads in pruned_heads:
                if self.attentions[int(layer)].n_heads == config.n_heads:
                    self.prune_heads({int(layer): list(map(int, heads))})


    def _resize_token_embeddings(self, new_num_tokens):
        raise NotImplementedError

    def _prune_heads(self, heads_to_prune):
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
            See base class PreTrainedModel
        """
        raise NotImplementedError

thomwolf's avatar
thomwolf committed
297
298
299
300
    def call(self, inputs, attention_mask=None, langs=None, token_type_ids=None,
             position_ids=None, lengths=None, cache=None, head_mask=None,
             training=False):  # removed: src_enc=None, src_len=None
        if isinstance(inputs, (tuple, list)):
thomwolf's avatar
thomwolf committed
301
            input_ids = inputs[0]
thomwolf's avatar
thomwolf committed
302
303
304
305
306
307
308
            attention_mask = inputs[1] if len(inputs) > 1 else attention_mask
            langs = inputs[2] if len(inputs) > 2 else langs
            token_type_ids = inputs[3] if len(inputs) > 3 else token_type_ids
            position_ids = inputs[4] if len(inputs) > 4 else position_ids
            lengths = inputs[5] if len(inputs) > 5 else lengths
            cache = inputs[6] if len(inputs) > 6 else cache
            head_mask = inputs[7] if len(inputs) > 7 else head_mask
thomwolf's avatar
thomwolf committed
309
            assert len(inputs) <= 8, "Too many inputs."
thomwolf's avatar
thomwolf committed
310
        elif isinstance(inputs, dict):
thomwolf's avatar
thomwolf committed
311
            input_ids = inputs.get('input_ids')
thomwolf's avatar
thomwolf committed
312
313
314
315
316
317
318
            attention_mask = inputs.get('attention_mask', attention_mask)
            langs = inputs.get('langs', langs)
            token_type_ids = inputs.get('token_type_ids', token_type_ids)
            position_ids = inputs.get('position_ids', position_ids)
            lengths = inputs.get('lengths', lengths)
            cache = inputs.get('cache', cache)
            head_mask = inputs.get('head_mask', head_mask)
thomwolf's avatar
thomwolf committed
319
            assert len(inputs) <= 8, "Too many inputs."
thomwolf's avatar
thomwolf committed
320
321
        else:
            input_ids = inputs
thomwolf's avatar
thomwolf committed
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451

        if lengths is None:
            lengths = tf.reduce_sum(tf.cast(tf.not_equal(input_ids, self.pad_index), dtype=tf.int32), axis=1)
        # mask = input_ids != self.pad_index

        # check inputs
        bs, slen = shape_list(input_ids)
        assert shape_list(lengths)[0] == bs
        # assert lengths.max().item() <= slen
        # input_ids = input_ids.transpose(0, 1)  # batch size as dimension 0
        # assert (src_enc is None) == (src_len is None)
        # if src_enc is not None:
        #     assert self.is_decoder
        #     assert src_enc.size(0) == bs

        # generate masks
        mask, attn_mask = get_masks(slen, lengths, self.causal, padding_mask=attention_mask)
        # if self.is_decoder and src_enc is not None:
        #     src_mask = torch.arange(src_len.max(), dtype=torch.long, device=lengths.device) < src_len[:, None]

        # position_ids
        if position_ids is None:
            position_ids = tf.expand_dims(tf.range(slen), axis=0)
        else:
            assert shape_list(position_ids) == [bs, slen]  # (slen, bs)
            # position_ids = position_ids.transpose(0, 1)

        # langs
        if langs is not None:
            assert shape_list(langs) == [bs, slen]  # (slen, bs)
            # langs = langs.transpose(0, 1)

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x qlen x klen]
        if head_mask is not None:
            raise NotImplementedError
        else:
            head_mask = [None] * self.n_layers

        # do not recompute cached elements
        if cache is not None:
            _slen = slen - cache['slen']
            input_ids = input_ids[:, -_slen:]
            position_ids = position_ids[:, -_slen:]
            if langs is not None:
                langs = langs[:, -_slen:]
            mask = mask[:, -_slen:]
            attn_mask = attn_mask[:, -_slen:]

        # embeddings
        tensor = self.embeddings(input_ids)
        tensor = tensor + self.position_embeddings(position_ids)
        if langs is not None and self.use_lang_emb:
            tensor = tensor + self.lang_embeddings(langs)
        if token_type_ids is not None:
            tensor = tensor + self.embeddings(token_type_ids)
        tensor = self.layer_norm_emb(tensor)
        tensor = self.dropout(tensor, training=training)
        tensor = tensor * mask[..., tf.newaxis]

        # transformer layers
        hidden_states = ()
        attentions = ()
        for i in range(self.n_layers):
            if self.output_hidden_states:
                hidden_states = hidden_states + (tensor,)

            # self attention
            attn_outputs = self.attentions[i]([tensor, attn_mask, None, cache, head_mask[i]], training=training)
            attn = attn_outputs[0]
            if self.output_attentions:
                attentions = attentions + (attn_outputs[1],)
            attn = self.dropout(attn, training=training)
            tensor = tensor + attn
            tensor = self.layer_norm1[i](tensor)

            # encoder attention (for decoder only)
            # if self.is_decoder and src_enc is not None:
            #     attn = self.encoder_attn[i](tensor, src_mask, kv=src_enc, cache=cache)
            #     attn = F.dropout(attn, p=self.dropout, training=self.training)
            #     tensor = tensor + attn
            #     tensor = self.layer_norm15[i](tensor)

            # FFN
            tensor = tensor + self.ffns[i](tensor)
            tensor = self.layer_norm2[i](tensor)
            tensor = tensor * mask[..., tf.newaxis]

        # Add last hidden state
        if self.output_hidden_states:
            hidden_states = hidden_states + (tensor,)

        # update cache length
        if cache is not None:
            cache['slen'] += tensor.size(1)

        # move back sequence length to dimension 0
        # tensor = tensor.transpose(0, 1)

        outputs = (tensor,)
        if self.output_hidden_states:
            outputs = outputs + (hidden_states,)
        if self.output_attentions:
            outputs = outputs + (attentions,)
        return outputs  # outputs, (hidden_states), (attentions)


class TFXLMPreTrainedModel(TFPreTrainedModel):
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
    config_class = XLMConfig
    pretrained_model_archive_map = TF_XLM_PRETRAINED_MODEL_ARCHIVE_MAP
    load_pt_weights = load_xlm_pt_weights_in_tf2
    base_model_prefix = "transformer"


XLM_START_DOCSTRING = r"""    The XLM model was proposed in
    `Cross-lingual Language Model Pretraining`_
    by Guillaume Lample*, Alexis Conneau*. It's a transformer pre-trained using one of the following objectives:

        - a causal language modeling (CLM) objective (next token prediction),
        - a masked language modeling (MLM) objective (Bert-like), or
        - a Translation Language Modeling (TLM) object (extension of Bert's MLM to multiple language inputs)

    Original code can be found `here`_.

thomwolf's avatar
thomwolf committed
452
453
    This model is a tf.keras.Model `tf.keras.Model`_ sub-class. Use it as a regular TF 2.0 Keras Model and
    refer to the TF 2.0 documentation for all matter related to general usage and behavior.
thomwolf's avatar
thomwolf committed
454
455
456
457
458
459
460

    .. _`Cross-lingual Language Model Pretraining`:
        https://arxiv.org/abs/1901.07291

    .. _`here`:
        https://github.com/facebookresearch/XLM

thomwolf's avatar
thomwolf committed
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
    .. _`tf.keras.Model`:
        https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/Model

    Note on the model inputs:
        TF 2.0 models accepts two formats as inputs:

            - having all inputs as keyword arguments (like PyTorch models), or
            - having all inputs as a list, tuple or dict in the first positional arguments.

        This second option is usefull when using `tf.keras.Model.fit()` method which currently requires having all the tensors in the first argument of the model call function: `model(inputs)`.

        If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :

        - a single Tensor with input_ids only and nothing else: `model(inputs_ids)
        - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
            `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
        - a dictionary with one or several input Tensors associaed to the input names given in the docstring:
            `model({'input_ids': input_ids, 'token_type_ids': token_type_ids})`

thomwolf's avatar
thomwolf committed
480
481
482
483
484
485
486
487
    Parameters:
        config (:class:`~pytorch_transformers.XLMConfig`): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the configuration.
            Check out the :meth:`~pytorch_transformers.PreTrainedModel.from_pretrained` method to load the model weights.
"""

XLM_INPUTS_DOCSTRING = r"""
    Inputs:
thomwolf's avatar
thomwolf committed
488
        **input_ids**: ```Numpy array`` or ``tf.Tensor`` of shape ``(batch_size, sequence_length)``:
thomwolf's avatar
thomwolf committed
489
490
491
492
493
494
495
496
            Indices of input sequence tokens in the vocabulary.

            XLM is a model with absolute position embeddings so it's usually advised to pad the inputs on
            the right rather than the left.

            Indices can be obtained using :class:`pytorch_transformers.XLMTokenizer`.
            See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and
            :func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
thomwolf's avatar
thomwolf committed
497
        **attention_mask**: (`optional`) ``Numpy array`` or ``tf.Tensor`` of shape ``(batch_size, sequence_length)``:
thomwolf's avatar
thomwolf committed
498
499
500
            Mask to avoid performing attention on padding token indices.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
thomwolf's avatar
thomwolf committed
501
        **langs**: (`optional`) ```Numpy array`` or ``tf.Tensor`` of shape ``(batch_size, sequence_length)``:
thomwolf's avatar
thomwolf committed
502
503
504
505
506
            A parallel sequence of tokens to be used to indicate the language of each token in the input.
            Indices are languages ids which can be obtained from the language names by using two conversion mappings
            provided in the configuration of the model (only provided for multilingual models).
            More precisely, the `language name -> language id` mapping is in `model.config.lang2id` (dict str -> int) and
            the `language id -> language name` mapping is `model.config.id2lang` (dict int -> str).
thomwolf's avatar
thomwolf committed
507
        **token_type_ids**: (`optional`) ```Numpy array`` or ``tf.Tensor`` of shape ``(batch_size, sequence_length)``:
thomwolf's avatar
thomwolf committed
508
509
510
            A parallel sequence of tokens (can be used to indicate various portions of the inputs).
            The embeddings from these tokens will be summed with the respective token embeddings.
            Indices are selected in the vocabulary (unlike BERT which has a specific vocabulary for segment indices).
thomwolf's avatar
thomwolf committed
511
        **position_ids**: (`optional`) ```Numpy array`` or ``tf.Tensor`` of shape ``(batch_size, sequence_length)``:
thomwolf's avatar
thomwolf committed
512
513
            Indices of positions of each input sequence tokens in the position embeddings.
            Selected in the range ``[0, config.max_position_embeddings - 1]``.
thomwolf's avatar
thomwolf committed
514
        **lengths**: (`optional`) ```Numpy array`` or ``tf.Tensor`` of shape ``(batch_size,)``:
thomwolf's avatar
thomwolf committed
515
516
517
518
            Length of each sentence that can be used to avoid performing attention on padding token indices.
            You can also use `attention_mask` for the same result (see above), kept here for compatbility.
            Indices selected in ``[0, ..., input_ids.size(-1)]``:
        **cache**:
thomwolf's avatar
thomwolf committed
519
            dictionary with ``Numpy array`` or ``tf.Tensor`` that contains pre-computed
thomwolf's avatar
thomwolf committed
520
521
522
            hidden-states (key and values in the attention blocks) as computed by the model
            (see `cache` output below). Can be used to speed up sequential decoding.
            The dictionary object will be modified in-place during the forward pass to add newly computed hidden-states.
thomwolf's avatar
thomwolf committed
523
        **head_mask**: (`optional`) ``Numpy array`` or ``tf.Tensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
thomwolf's avatar
thomwolf committed
524
525
526
527
528
529
530
531
532
533
            Mask to nullify selected heads of the self-attention modules.
            Mask values selected in ``[0, 1]``:
            ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
"""

@add_start_docstrings("The bare XLM Model transformer outputing raw hidden-states without any specific head on top.",
                      XLM_START_DOCSTRING, XLM_INPUTS_DOCSTRING)
class TFXLMModel(TFXLMPreTrainedModel):
    r"""
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
thomwolf's avatar
thomwolf committed
534
        **last_hidden_state**: ``tf.Tensor`` of shape ``(batch_size, sequence_length, hidden_size)``
thomwolf's avatar
thomwolf committed
535
536
            Sequence of hidden-states at the last layer of the model.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
thomwolf's avatar
thomwolf committed
537
            list of ``tf.Tensor`` (one for the output of each layer + the output of the embeddings)
thomwolf's avatar
thomwolf committed
538
539
540
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
thomwolf's avatar
thomwolf committed
541
            list of ``tf.Tensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
thomwolf's avatar
thomwolf committed
542
543
544
545
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

thomwolf's avatar
thomwolf committed
546
547
548
        import tensorflow as tf
        from pytorch_transformers import XLMTokenizer, TFXLMModel

thomwolf's avatar
thomwolf committed
549
        tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
thomwolf's avatar
thomwolf committed
550
551
        model = TFXLMModel.from_pretrained('xlm-mlm-en-2048')
        input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :]  # Batch size 1
thomwolf's avatar
thomwolf committed
552
553
554
555
556
557
558
559
        outputs = model(input_ids)
        last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple

    """
    def __init__(self, config, *inputs, **kwargs):
        super(TFXLMModel, self).__init__(config, *inputs, **kwargs)
        self.transformer = TFXLMMainLayer(config, name='transformer')

thomwolf's avatar
thomwolf committed
560
561
    def call(self, inputs, **kwargs):
        outputs = self.transformer(inputs, **kwargs)
thomwolf's avatar
thomwolf committed
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
        return outputs



class TFXLMPredLayer(tf.keras.layers.Layer):
    """
    Prediction layer (cross_entropy or adaptive_softmax).
    """
    def __init__(self, config, input_embeddings, **kwargs):
        super(TFXLMPredLayer, self).__init__(**kwargs)
        self.asm = config.asm
        self.n_words = config.n_words
        self.pad_index = config.pad_index
        if config.asm is False:
            self.input_embeddings = input_embeddings
        else:
            raise NotImplementedError
            # self.proj = nn.AdaptiveLogSoftmaxWithLoss(
            #     in_features=dim,
            #     n_classes=config.n_words,
            #     cutoffs=config.asm_cutoffs,
            #     div_value=config.asm_div_value,
            #     head_bias=True,  # default is False
            # )

    def build(self, input_shape):
        # The output weights are the same as the input embeddings, but there is an output-only bias for each token.
        self.bias = self.add_weight(shape=(self.n_words,),
                                    initializer='zeros',
                                    trainable=True,
                                    name='bias')
        super(TFXLMPredLayer, self).build(input_shape)

    def call(self, hidden_states):
        hidden_states = self.input_embeddings(hidden_states, mode="linear")
        hidden_states = hidden_states + self.bias
        return hidden_states


@add_start_docstrings("""The XLM Model transformer with a language modeling head on top
    (linear layer with weights tied to the input embeddings). """,
    XLM_START_DOCSTRING, XLM_INPUTS_DOCSTRING)
class TFXLMWithLMHeadModel(TFXLMPreTrainedModel):
    r"""
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
thomwolf's avatar
thomwolf committed
607
        **prediction_scores**: ``tf.Tensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
thomwolf's avatar
thomwolf committed
608
609
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
thomwolf's avatar
thomwolf committed
610
            list of ``tf.Tensor`` (one for the output of each layer + the output of the embeddings)
thomwolf's avatar
thomwolf committed
611
612
613
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
thomwolf's avatar
thomwolf committed
614
            list of ``tf.Tensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
thomwolf's avatar
thomwolf committed
615
616
617
618
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

thomwolf's avatar
thomwolf committed
619
620
621
        import tensorflow as tf
        from pytorch_transformers import XLMTokenizer, TFXLMWithLMHeadModel

thomwolf's avatar
thomwolf committed
622
        tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
thomwolf's avatar
thomwolf committed
623
624
        model = TFXLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048')
        input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :]  # Batch size 1
thomwolf's avatar
thomwolf committed
625
626
627
628
629
630
        outputs = model(input_ids)
        last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple

    """
    def __init__(self, config, *inputs, **kwargs):
        super(TFXLMWithLMHeadModel, self).__init__(config, *inputs, **kwargs)
631
        self.transformer = TFXLMMainLayer(config, name='transformer')
632
        self.pred_layer = TFXLMPredLayer(config, self.transformer.embeddings, name='pred_layer_._proj')
thomwolf's avatar
thomwolf committed
633
634


thomwolf's avatar
thomwolf committed
635
636
    def call(self, inputs, **kwargs):
        transformer_outputs = self.transformer(inputs, **kwargs)
thomwolf's avatar
thomwolf committed
637
638
639
640
641
642
643
644
645
646
647
648
649
650

        output = transformer_outputs[0]
        outputs = self.pred_layer(output)
        outputs = (outputs,) + transformer_outputs[1:]  # Keep new_mems and attention/hidden states if they are here

        return outputs


@add_start_docstrings("""XLM Model with a sequence classification/regression head on top (a linear layer on top of
    the pooled output) e.g. for GLUE tasks. """,
    XLM_START_DOCSTRING, XLM_INPUTS_DOCSTRING)
class TFXLMForSequenceClassification(TFXLMPreTrainedModel):
    r"""
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
thomwolf's avatar
thomwolf committed
651
        **logits**: ``tf.Tensor`` of shape ``(batch_size, config.num_labels)``
thomwolf's avatar
thomwolf committed
652
653
            Classification (or regression if config.num_labels==1) scores (before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
thomwolf's avatar
thomwolf committed
654
            list of ``tf.Tensor`` (one for the output of each layer + the output of the embeddings)
thomwolf's avatar
thomwolf committed
655
656
657
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
thomwolf's avatar
thomwolf committed
658
            list of ``tf.Tensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
thomwolf's avatar
thomwolf committed
659
660
661
662
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

thomwolf's avatar
thomwolf committed
663
664
665
        import tensorflow as tf
        from pytorch_transformers import XLMTokenizer, TFXLMForSequenceClassification

thomwolf's avatar
thomwolf committed
666
        tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
thomwolf's avatar
thomwolf committed
667
668
669
670
671
        model = TFXLMForSequenceClassification.from_pretrained('xlm-mlm-en-2048')
        input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :]  # Batch size 1
        labels = tf.constant([1])[None, :]  # Batch size 1
        outputs = model(input_ids)
        logits = outputs[0]
thomwolf's avatar
thomwolf committed
672
673
674
675
676
677
678
679
680

    """
    def __init__(self, config, *inputs, **kwargs):
        super(TFXLMForSequenceClassification, self).__init__(config, *inputs, **kwargs)
        self.num_labels = config.num_labels

        self.transformer = TFXLMMainLayer(config, name='transformer')
        self.sequence_summary = TFSequenceSummary(config, name='sequence_summary')

thomwolf's avatar
thomwolf committed
681
682
    def call(self, inputs, **kwargs):
        transformer_outputs = self.transformer(inputs, **kwargs)
thomwolf's avatar
thomwolf committed
683
684
685
686
687
688
689
690
691
692
693
694
695
696
        output = transformer_outputs[0]

        logits = self.sequence_summary(output)

        outputs = (logits,) + transformer_outputs[1:]  # Keep new_mems and attention/hidden states if they are here
        return outputs


@add_start_docstrings("""XLM Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of
    the hidden-states output to compute `span start logits` and `span end logits`). """,
    XLM_START_DOCSTRING, XLM_INPUTS_DOCSTRING)
class TFXLMForQuestionAnsweringSimple(TFXLMPreTrainedModel):
    r"""
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
thomwolf's avatar
thomwolf committed
697
        **start_scores**: ``tf.Tensor`` of shape ``(batch_size, sequence_length,)``
thomwolf's avatar
thomwolf committed
698
            Span-start scores (before SoftMax).
thomwolf's avatar
thomwolf committed
699
        **end_scores**: ``tf.Tensor`` of shape ``(batch_size, sequence_length,)``
thomwolf's avatar
thomwolf committed
700
701
            Span-end scores (before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
thomwolf's avatar
thomwolf committed
702
            list of ``tf.Tensor`` (one for the output of each layer + the output of the embeddings)
thomwolf's avatar
thomwolf committed
703
704
705
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
thomwolf's avatar
thomwolf committed
706
            list of ``tf.Tensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
thomwolf's avatar
thomwolf committed
707
708
709
710
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

thomwolf's avatar
thomwolf committed
711
712
713
        import tensorflow as tf
        from pytorch_transformers import XLMTokenizer, TFXLMForQuestionAnsweringSimple

thomwolf's avatar
thomwolf committed
714
        tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
thomwolf's avatar
thomwolf committed
715
716
717
718
        model = TFXLMForQuestionAnsweringSimple.from_pretrained('xlm-mlm-en-2048')
        input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :]  # Batch size 1
        outputs = model(input_ids)
        start_scores, end_scores = outputs[:2]
thomwolf's avatar
thomwolf committed
719
720
721
722
723
724
725

    """
    def __init__(self, config, *inputs, **kwargs):
        super(TFXLMForQuestionAnsweringSimple, self).__init__(config, *inputs, **kwargs)
        self.transformer = TFXLMMainLayer(config, name='transformer')
        self.qa_outputs = tf.keras.layers.Dense(config.num_labels, name='qa_outputs')

thomwolf's avatar
thomwolf committed
726
727
    def call(self, inputs, **kwargs):
        transformer_outputs = self.transformer(inputs, **kwargs)
thomwolf's avatar
thomwolf committed
728
729
730
731
732
733
734
735
736
737
738

        sequence_output = transformer_outputs[0]

        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = tf.split(logits, 2, axis=-1)
        start_logits = tf.squeeze(start_logits, axis=-1)
        end_logits = tf.squeeze(end_logits, axis=-1)

        outputs = (start_logits, end_logits,) + transformer_outputs[1:]  # Keep mems, hidden states, attentions if there are in it

        return outputs  # start_logits, end_logits, (hidden_states), (attentions)